Spaces:
Running
Running
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from urllib.parse import urlparse, parse_qs | |
import tempfile | |
import time | |
import os | |
import numpy as np | |
# Constants | |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # 1 hour limit | |
# Device selection | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Load Whisper pipeline | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
# Extract YouTube Video ID | |
def _extract_yt_video_id(yt_url): | |
parsed_url = urlparse(yt_url) | |
return parse_qs(parsed_url.query).get("v", [""])[0] | |
# Embed YouTube Video in HTML | |
def _return_yt_html_embed(yt_url): | |
video_id = _extract_yt_video_id(yt_url) | |
if not video_id: | |
raise gr.Error("Invalid YouTube URL. Please check and try again.") | |
return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe> </center>' | |
# Transcription function (Fix applied) | |
def transcribe(audio_file, task): | |
if audio_file is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting.") | |
# Open file as binary to ensure correct data type | |
with open(audio_file, "rb") as f: | |
audio_data = f.read() | |
# Read audio using ffmpeg_read (correcting input format) | |
audio_array = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate) | |
# Convert to proper format | |
inputs = { | |
"raw": np.array(audio_array), | |
"sampling_rate": pipe.feature_extractor.sampling_rate | |
} | |
# Perform transcription | |
result = pipe( | |
inputs, | |
batch_size=BATCH_SIZE, | |
generate_kwargs={"task": task}, | |
return_timestamps=True | |
) | |
return result["text"] | |
# Download YouTube audio | |
def download_yt_audio(yt_url, filename): | |
ydl_opts = { | |
"format": "bestaudio/best", | |
"outtmpl": filename, | |
"postprocessors": [ | |
{"key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "192"} | |
], | |
} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
info = ydl.extract_info(yt_url, download=False) | |
file_length_s = info.get("duration", 0) # Duration in seconds | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
raise gr.Error(f"Maximum YouTube length is 1 hour. Your video is {file_length_s // 3600}h {file_length_s % 3600 // 60}m {file_length_s % 60}s.") | |
ydl.download([yt_url]) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
# YouTube transcription function | |
def yt_transcribe(yt_url, task, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "audio.mp3") | |
download_yt_audio(yt_url, filepath) | |
if os.path.getsize(filepath) > max_filesize * 1024 * 1024: | |
raise gr.Error(f"File too large! Max allowed size is {max_filesize}MB.") | |
with open(filepath, "rb") as f: | |
inputs = ffmpeg_read(f.read(), pipe.feature_extractor.sampling_rate) | |
inputs = { | |
"array": inputs, | |
"sampling_rate": pipe.feature_extractor.sampling_rate, | |
"attention_mask": torch.ones(len(inputs), dtype=torch.long), | |
} | |
text = pipe( | |
{"input_features": inputs}, | |
batch_size=BATCH_SIZE, | |
generate_kwargs={"task": task, "forced_decoder_ids": None}, | |
return_timestamps=True | |
)["text"] | |
return html_embed_str, text | |
# Gradio UI | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(type="filepath", label="Audio file"), | |
gr.Radio(["transcribe", "translate"], label="Task"), | |
], | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio", | |
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", | |
flagging_mode="never", | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste YouTube URL here", label="YouTube URL"), | |
gr.Radio(["transcribe", "translate"], label="Task") | |
], | |
outputs=["html", "text"], | |
title="Whisper Large V3: Transcribe YouTube", | |
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", | |
flagging_mode="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe, yt_transcribe], ["Audio file", "YouTube"]) | |
demo.launch() | |