whisper-asr-uz / app.py
mrmuminov's picture
Update app.py
c3e624b verified
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from urllib.parse import urlparse, parse_qs
import tempfile
import time
import os
import numpy as np
# Constants
MODEL_NAME = "dataprizma/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600 # 1 hour limit
# Device selection
device = 0 if torch.cuda.is_available() else "cpu"
# Load Whisper pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# Extract YouTube Video ID
def _extract_yt_video_id(yt_url):
parsed_url = urlparse(yt_url)
return parse_qs(parsed_url.query).get("v", [""])[0]
# Embed YouTube Video in HTML
def _return_yt_html_embed(yt_url):
video_id = _extract_yt_video_id(yt_url)
if not video_id:
raise gr.Error("Invalid YouTube URL. Please check and try again.")
return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe> </center>'
# Transcription function (Fix applied)
def transcribe(audio_file, task):
if audio_file is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting.")
# Open file as binary to ensure correct data type
with open(audio_file, "rb") as f:
audio_data = f.read()
# Read audio using ffmpeg_read (correcting input format)
audio_array = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate)
# Convert to proper format
inputs = {
"raw": np.array(audio_array),
"sampling_rate": pipe.feature_extractor.sampling_rate
}
# Perform transcription
result = pipe(
inputs,
batch_size=BATCH_SIZE,
generate_kwargs={"task": task},
return_timestamps=True
)
return result["text"]
# Download YouTube audio
def download_yt_audio(yt_url, filename):
ydl_opts = {
"format": "bestaudio/best",
"outtmpl": filename,
"postprocessors": [
{"key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "192"}
],
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
info = ydl.extract_info(yt_url, download=False)
file_length_s = info.get("duration", 0) # Duration in seconds
if file_length_s > YT_LENGTH_LIMIT_S:
raise gr.Error(f"Maximum YouTube length is 1 hour. Your video is {file_length_s // 3600}h {file_length_s % 3600 // 60}m {file_length_s % 60}s.")
ydl.download([yt_url])
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
# YouTube transcription function
def yt_transcribe(yt_url, task, max_filesize=75.0):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "audio.mp3")
download_yt_audio(yt_url, filepath)
if os.path.getsize(filepath) > max_filesize * 1024 * 1024:
raise gr.Error(f"File too large! Max allowed size is {max_filesize}MB.")
with open(filepath, "rb") as f:
inputs = ffmpeg_read(f.read(), pipe.feature_extractor.sampling_rate)
inputs = {
"array": inputs,
"sampling_rate": pipe.feature_extractor.sampling_rate,
"attention_mask": torch.ones(len(inputs), dtype=torch.long),
}
text = pipe(
{"input_features": inputs},
batch_size=BATCH_SIZE,
generate_kwargs={"task": task, "forced_decoder_ids": None},
return_timestamps=True
)["text"]
return html_embed_str, text
# Gradio UI
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma",
flagging_mode="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste YouTube URL here", label="YouTube URL"),
gr.Radio(["transcribe", "translate"], label="Task")
],
outputs=["html", "text"],
title="Whisper Large V3: Transcribe YouTube",
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma",
flagging_mode="never",
)
with demo:
gr.TabbedInterface([file_transcribe, yt_transcribe], ["Audio file", "YouTube"])
demo.launch()