Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,24 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import yt_dlp as youtube_dl
|
5 |
from transformers import pipeline
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
7 |
|
8 |
import tempfile
|
9 |
import time
|
10 |
import os
|
11 |
|
|
|
12 |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo"
|
13 |
BATCH_SIZE = 8
|
14 |
FILE_LIMIT_MB = 1000
|
15 |
-
YT_LENGTH_LIMIT_S = 3600 #
|
16 |
|
|
|
17 |
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
|
|
|
19 |
pipe = pipeline(
|
20 |
task="automatic-speech-recognition",
|
21 |
model=MODEL_NAME,
|
@@ -23,89 +26,84 @@ pipe = pipeline(
|
|
23 |
device=device,
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
27 |
def transcribe(inputs, task):
|
28 |
if inputs is None:
|
29 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
30 |
|
31 |
-
text = pipe(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
" </center>"
|
40 |
-
)
|
41 |
-
return HTML_str
|
42 |
|
|
|
43 |
def download_yt_audio(yt_url, filename):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
file_length = info["duration_string"]
|
52 |
-
file_h_m_s = file_length.split(":")
|
53 |
-
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
54 |
-
|
55 |
-
if len(file_h_m_s) == 1:
|
56 |
-
file_h_m_s.insert(0, 0)
|
57 |
-
if len(file_h_m_s) == 2:
|
58 |
-
file_h_m_s.insert(0, 0)
|
59 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
60 |
-
|
61 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
62 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
63 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
64 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
65 |
-
|
66 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
67 |
|
68 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
69 |
try:
|
|
|
|
|
|
|
|
|
70 |
ydl.download([yt_url])
|
71 |
-
except youtube_dl.utils.
|
72 |
raise gr.Error(str(err))
|
73 |
|
74 |
-
|
75 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
76 |
html_embed_str = _return_yt_html_embed(yt_url)
|
77 |
|
78 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
79 |
-
filepath = os.path.join(tmpdirname, "
|
80 |
download_yt_audio(yt_url, filepath)
|
|
|
|
|
|
|
|
|
81 |
with open(filepath, "rb") as f:
|
82 |
-
inputs = f.read()
|
83 |
|
84 |
-
inputs =
|
85 |
-
|
|
|
|
|
|
|
86 |
|
87 |
-
text = pipe(
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
return html_embed_str, text
|
90 |
|
91 |
-
|
92 |
demo = gr.Blocks()
|
93 |
|
94 |
-
mf_transcribe = gr.Interface(
|
95 |
-
fn=transcribe,
|
96 |
-
inputs=[
|
97 |
-
gr.Audio(type="filepath"),
|
98 |
-
gr.Radio(["transcribe", "translate"], label="Task"),
|
99 |
-
],
|
100 |
-
outputs="text",
|
101 |
-
theme="huggingface",
|
102 |
-
title="Whisper Large V3: Transcribe Audio",
|
103 |
-
description=(
|
104 |
-
"Whisper Large V3 fine-tuned for Uzbek language by Dataprizma"
|
105 |
-
),
|
106 |
-
allow_flagging="never",
|
107 |
-
)
|
108 |
-
|
109 |
file_transcribe = gr.Interface(
|
110 |
fn=transcribe,
|
111 |
inputs=[
|
@@ -113,30 +111,24 @@ file_transcribe = gr.Interface(
|
|
113 |
gr.Radio(["transcribe", "translate"], label="Task"),
|
114 |
],
|
115 |
outputs="text",
|
116 |
-
theme="huggingface",
|
117 |
title="Whisper Large V3: Transcribe Audio",
|
118 |
-
description=
|
119 |
-
|
120 |
-
),
|
121 |
-
allow_flagging="never",
|
122 |
)
|
123 |
|
124 |
yt_transcribe = gr.Interface(
|
125 |
fn=yt_transcribe,
|
126 |
inputs=[
|
127 |
-
gr.Textbox(lines=1, placeholder="Paste
|
128 |
gr.Radio(["transcribe", "translate"], label="Task")
|
129 |
],
|
130 |
outputs=["html", "text"],
|
131 |
-
theme="huggingface",
|
132 |
title="Whisper Large V3: Transcribe YouTube",
|
133 |
-
description=
|
134 |
-
|
135 |
-
),
|
136 |
-
allow_flagging="never",
|
137 |
)
|
138 |
|
139 |
with demo:
|
140 |
-
gr.TabbedInterface([
|
141 |
|
142 |
demo.launch()
|
|
|
1 |
import torch
|
|
|
2 |
import gradio as gr
|
3 |
import yt_dlp as youtube_dl
|
4 |
from transformers import pipeline
|
5 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
6 |
+
from urllib.parse import urlparse, parse_qs
|
7 |
|
8 |
import tempfile
|
9 |
import time
|
10 |
import os
|
11 |
|
12 |
+
# Constants
|
13 |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo"
|
14 |
BATCH_SIZE = 8
|
15 |
FILE_LIMIT_MB = 1000
|
16 |
+
YT_LENGTH_LIMIT_S = 3600 # 1 hour limit
|
17 |
|
18 |
+
# Device selection
|
19 |
device = 0 if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
+
# Load Whisper pipeline
|
22 |
pipe = pipeline(
|
23 |
task="automatic-speech-recognition",
|
24 |
model=MODEL_NAME,
|
|
|
26 |
device=device,
|
27 |
)
|
28 |
|
29 |
+
# Extract YouTube Video ID
|
30 |
+
def _extract_yt_video_id(yt_url):
|
31 |
+
parsed_url = urlparse(yt_url)
|
32 |
+
return parse_qs(parsed_url.query).get("v", [""])[0]
|
33 |
+
|
34 |
+
# Embed YouTube Video in HTML
|
35 |
+
def _return_yt_html_embed(yt_url):
|
36 |
+
video_id = _extract_yt_video_id(yt_url)
|
37 |
+
if not video_id:
|
38 |
+
raise gr.Error("Invalid YouTube URL. Please check and try again.")
|
39 |
+
return f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"></iframe> </center>'
|
40 |
|
41 |
+
# Transcription function
|
42 |
def transcribe(inputs, task):
|
43 |
if inputs is None:
|
44 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
45 |
|
46 |
+
text = pipe(
|
47 |
+
{"input_features": inputs},
|
48 |
+
batch_size=BATCH_SIZE,
|
49 |
+
generate_kwargs={"task": task, "forced_decoder_ids": None},
|
50 |
+
return_timestamps=True
|
51 |
+
)["text"]
|
52 |
+
|
53 |
+
return text
|
|
|
|
|
|
|
54 |
|
55 |
+
# Download YouTube audio
|
56 |
def download_yt_audio(yt_url, filename):
|
57 |
+
ydl_opts = {
|
58 |
+
"format": "bestaudio/best",
|
59 |
+
"outtmpl": filename,
|
60 |
+
"postprocessors": [
|
61 |
+
{"key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "192"}
|
62 |
+
],
|
63 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
66 |
try:
|
67 |
+
info = ydl.extract_info(yt_url, download=False)
|
68 |
+
file_length_s = info.get("duration", 0) # Duration in seconds
|
69 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
70 |
+
raise gr.Error(f"Maximum YouTube length is 1 hour. Your video is {file_length_s // 3600}h {file_length_s % 3600 // 60}m {file_length_s % 60}s.")
|
71 |
ydl.download([yt_url])
|
72 |
+
except youtube_dl.utils.DownloadError as err:
|
73 |
raise gr.Error(str(err))
|
74 |
|
75 |
+
# YouTube transcription function
|
76 |
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
+
filepath = os.path.join(tmpdirname, "audio.mp3")
|
81 |
download_yt_audio(yt_url, filepath)
|
82 |
+
|
83 |
+
if os.path.getsize(filepath) > max_filesize * 1024 * 1024:
|
84 |
+
raise gr.Error(f"File too large! Max allowed size is {max_filesize}MB.")
|
85 |
+
|
86 |
with open(filepath, "rb") as f:
|
87 |
+
inputs = ffmpeg_read(f.read(), pipe.feature_extractor.sampling_rate)
|
88 |
|
89 |
+
inputs = {
|
90 |
+
"array": inputs,
|
91 |
+
"sampling_rate": pipe.feature_extractor.sampling_rate,
|
92 |
+
"attention_mask": torch.ones(len(inputs), dtype=torch.long),
|
93 |
+
}
|
94 |
|
95 |
+
text = pipe(
|
96 |
+
{"input_features": inputs},
|
97 |
+
batch_size=BATCH_SIZE,
|
98 |
+
generate_kwargs={"task": task, "forced_decoder_ids": None},
|
99 |
+
return_timestamps=True
|
100 |
+
)["text"]
|
101 |
|
102 |
return html_embed_str, text
|
103 |
|
104 |
+
# Gradio UI
|
105 |
demo = gr.Blocks()
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
file_transcribe = gr.Interface(
|
108 |
fn=transcribe,
|
109 |
inputs=[
|
|
|
111 |
gr.Radio(["transcribe", "translate"], label="Task"),
|
112 |
],
|
113 |
outputs="text",
|
|
|
114 |
title="Whisper Large V3: Transcribe Audio",
|
115 |
+
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma",
|
116 |
+
flagging_mode="never",
|
|
|
|
|
117 |
)
|
118 |
|
119 |
yt_transcribe = gr.Interface(
|
120 |
fn=yt_transcribe,
|
121 |
inputs=[
|
122 |
+
gr.Textbox(lines=1, placeholder="Paste YouTube URL here", label="YouTube URL"),
|
123 |
gr.Radio(["transcribe", "translate"], label="Task")
|
124 |
],
|
125 |
outputs=["html", "text"],
|
|
|
126 |
title="Whisper Large V3: Transcribe YouTube",
|
127 |
+
description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma",
|
128 |
+
flagging_mode="never",
|
|
|
|
|
129 |
)
|
130 |
|
131 |
with demo:
|
132 |
+
gr.TabbedInterface([file_transcribe, yt_transcribe], ["Audio file", "YouTube"])
|
133 |
|
134 |
demo.launch()
|