Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,49 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
5 |
-
import numpy as np
|
6 |
|
7 |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo"
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
pipe = pipeline(
|
13 |
-
task="automatic-speech-recognition",
|
14 |
-
model=MODEL_NAME,
|
15 |
-
chunk_length_s=9,
|
16 |
-
device=device,
|
17 |
-
model_kwargs={
|
18 |
-
"attn_implementation": "eager"
|
19 |
-
},
|
20 |
-
)
|
21 |
|
22 |
def transcribe(audio_file):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
demo = gr.Blocks()
|
48 |
|
|
|
1 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
from transformers import pipeline
|
6 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
|
|
7 |
|
8 |
MODEL_NAME = "dataprizma/whisper-large-v3-turbo"
|
9 |
+
|
10 |
+
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
11 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME)
|
12 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def transcribe(audio_file):
|
15 |
+
|
16 |
+
global model
|
17 |
+
global processor
|
18 |
+
|
19 |
+
# Move to GPU if available
|
20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
+
model = model.to(device)
|
22 |
+
|
23 |
+
# Load and preprocess audio
|
24 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
25 |
+
if sample_rate != 16000:
|
26 |
+
waveform = torchaudio.functional.resample(waveform, sample_rate, 16000)
|
27 |
+
|
28 |
+
# Convert to mono if needed
|
29 |
+
if waveform.shape[0] > 1:
|
30 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
31 |
+
|
32 |
+
# Process audio
|
33 |
+
input_features = processor(
|
34 |
+
waveform.squeeze().numpy(),
|
35 |
+
sampling_rate=16000,
|
36 |
+
return_tensors="pt",
|
37 |
+
language="uz"
|
38 |
+
).input_features.to(device)
|
39 |
+
|
40 |
+
# Generate transcription
|
41 |
+
with torch.no_grad():
|
42 |
+
predicted_ids = model.generate(input_features)
|
43 |
+
|
44 |
+
# Decode
|
45 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
46 |
+
return transcription
|
47 |
|
48 |
demo = gr.Blocks()
|
49 |
|