import torch import gradio as gr import yt_dlp as youtube_dl from transformers import pipeline from transformers.pipelines.audio_utils import ffmpeg_read from urllib.parse import urlparse, parse_qs import tempfile import time import os import numpy as np # Constants MODEL_NAME = "dataprizma/whisper-large-v3-turbo" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 YT_LENGTH_LIMIT_S = 3600 # 1 hour limit # Device selection device = 0 if torch.cuda.is_available() else "cpu" # Load Whisper pipeline pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) # Extract YouTube Video ID def _extract_yt_video_id(yt_url): parsed_url = urlparse(yt_url) return parse_qs(parsed_url.query).get("v", [""])[0] # Embed YouTube Video in HTML def _return_yt_html_embed(yt_url): video_id = _extract_yt_video_id(yt_url) if not video_id: raise gr.Error("Invalid YouTube URL. Please check and try again.") return f'
' # Transcription function (Fix applied) def transcribe(audio_file, task): if audio_file is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting.") # Open file as binary to ensure correct data type with open(audio_file, "rb") as f: audio_data = f.read() # Read audio using ffmpeg_read (correcting input format) audio_array = ffmpeg_read(audio_data, pipe.feature_extractor.sampling_rate) # Convert to proper format inputs = { "raw": np.array(audio_array), "sampling_rate": pipe.feature_extractor.sampling_rate } # Perform transcription result = pipe( inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True ) return result["text"] # Download YouTube audio def download_yt_audio(yt_url, filename): ydl_opts = { "format": "bestaudio/best", "outtmpl": filename, "postprocessors": [ {"key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "192"} ], } with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: info = ydl.extract_info(yt_url, download=False) file_length_s = info.get("duration", 0) # Duration in seconds if file_length_s > YT_LENGTH_LIMIT_S: raise gr.Error(f"Maximum YouTube length is 1 hour. Your video is {file_length_s // 3600}h {file_length_s % 3600 // 60}m {file_length_s % 60}s.") ydl.download([yt_url]) except youtube_dl.utils.DownloadError as err: raise gr.Error(str(err)) # YouTube transcription function def yt_transcribe(yt_url, task, max_filesize=75.0): html_embed_str = _return_yt_html_embed(yt_url) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "audio.mp3") download_yt_audio(yt_url, filepath) if os.path.getsize(filepath) > max_filesize * 1024 * 1024: raise gr.Error(f"File too large! Max allowed size is {max_filesize}MB.") with open(filepath, "rb") as f: inputs = ffmpeg_read(f.read(), pipe.feature_extractor.sampling_rate) inputs = { "array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate, "attention_mask": torch.ones(len(inputs), dtype=torch.long), } text = pipe( {"input_features": inputs}, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "forced_decoder_ids": None}, return_timestamps=True )["text"] return html_embed_str, text # Gradio UI demo = gr.Blocks() file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task"), ], outputs="text", title="Whisper Large V3: Transcribe Audio", description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", flagging_mode="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.Textbox(lines=1, placeholder="Paste YouTube URL here", label="YouTube URL"), gr.Radio(["transcribe", "translate"], label="Task") ], outputs=["html", "text"], title="Whisper Large V3: Transcribe YouTube", description="Whisper Large V3 fine-tuned for Uzbek language by Dataprizma", flagging_mode="never", ) with demo: gr.TabbedInterface([file_transcribe, yt_transcribe], ["Audio file", "YouTube"]) demo.launch()