import gradio as gr import pickle import pandas as pd # Load the trained model filename = 'knn_model.sav' loaded_model = pickle.load(open(filename, 'rb')) # Helper functions for input transformations def hptension(hp): return 1 if hp == 'yes' else 0 def ht_dis(ht): return 1 if ht == 'yes' else 0 def gender_select(gen): return 1 if gen == 'male' else 0 def age_group_selector(age_grp): age_map = {'0-16': 0, '17-32': 1, '33-48': 2, '49-64': 3, '64+': 4} return age_map.get(age_grp, 0) def smoker_cat(smoke): smoke_map = {'formerly smoked': 0, 'never smoked': 1, 'smokes': 2, 'Prefer not to say': 3} return smoke_map.get(smoke, 3) # Prediction function def predict_insurance(input_gender, input_age_group, input_hypertension, input_heart_disease, input_avg_glucose_level, input_bmi, input_smoking_status): # Prepare the input data series = { 'gender': [gender_select(input_gender)], 'age_band': [age_group_selector(input_age_group)], 'hypertension': [hptension(input_hypertension)], 'heart_disease': [ht_dis(input_heart_disease)], 'avg_glucose_level': [input_avg_glucose_level / 272], 'bmi': [input_bmi / 49], 'smoking_status': [smoker_cat(input_smoking_status)], } vector = pd.DataFrame(series) # Perform prediction result = loaded_model.predict(vector) return "Risk of having stroke is high" if result[0] == 1 else "Risk of having stroke is low" # CSS to hide footer and markdown elements css = """ footer {display:none !important} .output-markdown{display:none !important} footer {visibility: hidden} .gr-button-lg { z-index: 14; width: 113px; height: 30px; left: 0px; top: 0px; padding: 0px; cursor: pointer !important; background: none rgb(17, 20, 45) !important; border: none !important; text-align: center !important; font-size: 14px !important; font-weight: 500 !important; color: rgb(255, 255, 255) !important; line-height: 1 !important; border-radius: 6px !important; transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; box-shadow: none !important; } .gr-button-lg:hover{ z-index: 14; width: 113px; height: 30px; left: 0px; top: 0px; padding: 0px; cursor: pointer !important; background: none rgb(66, 133, 244) !important; border: none !important; text-align: center !important; font-size: 14px !important; font-weight: 500 !important; color: rgb(255, 255, 255) !important; line-height: 1 !important; border-radius: 6px !important; transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; } """ # Gradio app layout with gr.Blocks(title="Brain Stroke Prediction | Data Science Dojo", css=css) as demo: with gr.Row(): input_gender = gr.Radio(["male", "female"], label="Gender") input_hypertension = gr.Radio(["yes", "no"], label="Hypertension") input_heart_disease = gr.Radio(["yes", "no"], label="Heart Disease") with gr.Row(): input_age_group = gr.Dropdown(['0-16', '17-32', '33-48', '49-64', '64+'], label='Age Group') input_smoking_status = gr.Dropdown(['formerly smoked', 'never smoked', 'smokes', 'Prefer not to say'], label='Smoker') with gr.Row(): input_avg_glucose_level = gr.Slider(0, 270, label='Average Glucose Level') with gr.Row(): input_bmi = gr.Slider(0, 45, label='BMI Range') with gr.Row(): stroke = gr.Textbox(label='Chances of Stroke', interactive=False) btn_ins = gr.Button(value="Submit") btn_ins.click( fn=predict_insurance, inputs=[ input_gender, input_age_group, input_hypertension, input_heart_disease, input_avg_glucose_level, input_bmi, input_smoking_status, ], outputs=[stroke] ) demo.launch(debug=True)