Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,18 @@
|
|
1 |
import streamlit as st
|
2 |
import re
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Sidebar Style with Multicolored Background
|
6 |
sidebar_bg_style = """
|
@@ -81,61 +93,66 @@ if 'chat_history' not in st.session_state:
|
|
81 |
|
82 |
# Submit button for chat
|
83 |
if st.button("Submit Query"):
|
84 |
-
if query
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
self
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
# Display chat history
|
141 |
for q, r in st.session_state['chat_history']:
|
|
|
1 |
import streamlit as st
|
2 |
import re
|
3 |
import os
|
4 |
+
from langchain.chains import ConversationalRetrievalChain
|
5 |
+
from langchain.document_loaders import WebBaseLoader
|
6 |
+
from langchain.embeddings import SentenceTransformerEmbedding
|
7 |
+
from langchain.vectorstores import Chroma
|
8 |
+
from langchain.prompts import load_prompt
|
9 |
+
from langchain.chat_models import ChatGroq
|
10 |
+
from langchain.output_parsers import StrOutputParser
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain.runnables import RunnablePassthrough
|
13 |
+
import torch
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
import bs4
|
16 |
|
17 |
# Sidebar Style with Multicolored Background
|
18 |
sidebar_bg_style = """
|
|
|
93 |
|
94 |
# Submit button for chat
|
95 |
if st.button("Submit Query"):
|
96 |
+
if query:
|
97 |
+
if url_input:
|
98 |
+
# Blog loading logic based on user input URL
|
99 |
+
loader = WebBaseLoader(
|
100 |
+
web_paths=(url_input,), # Use the user-input URL
|
101 |
+
bs_kwargs=dict(
|
102 |
+
parse_only=bs4.SoupStrainer() # Adjust based on the user's URL structure
|
103 |
+
),
|
104 |
+
)
|
105 |
+
docs = loader.load()
|
106 |
+
|
107 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
108 |
+
splits = text_splitter.split_documents(docs)
|
109 |
+
|
110 |
+
# Define the embedding class
|
111 |
+
class SentenceTransformerEmbedding:
|
112 |
+
def __init__(self, model_name):
|
113 |
+
self.model = SentenceTransformer(model_name)
|
114 |
+
|
115 |
+
def embed_documents(self, texts):
|
116 |
+
embeddings = self.model.encode(texts, convert_to_tensor=True)
|
117 |
+
if isinstance(embeddings, torch.Tensor):
|
118 |
+
return embeddings.cpu().detach().numpy().tolist() # Convert tensor to list
|
119 |
+
return embeddings
|
120 |
+
|
121 |
+
def embed_query(self, query):
|
122 |
+
embedding = self.model.encode([query], convert_to_tensor=True)
|
123 |
+
if isinstance(embedding, torch.Tensor):
|
124 |
+
return embedding.cpu().detach().numpy().tolist()[0] # Convert tensor to list
|
125 |
+
return embedding[0]
|
126 |
+
|
127 |
+
# Initialize the embedding model
|
128 |
+
embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')
|
129 |
+
|
130 |
+
# Initialize Chroma with the embedding class
|
131 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
|
132 |
+
|
133 |
+
# Retrieve and generate using the relevant snippets of the blog
|
134 |
+
retriever = vectorstore.as_retriever()
|
135 |
+
prompt = load_prompt("rlm/rag-prompt")
|
136 |
+
|
137 |
+
def format_docs(docs):
|
138 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
139 |
+
|
140 |
+
rag_chain = (
|
141 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
142 |
+
| prompt
|
143 |
+
| ChatGroq(model="llama3-8b-8192") # Replace `llm` with an appropriate language model
|
144 |
+
| StrOutputParser()
|
145 |
+
)
|
146 |
+
|
147 |
+
# Generate the answer using the user's query
|
148 |
+
result = rag_chain.invoke(query)
|
149 |
+
|
150 |
+
# Store query and response in session for chat history
|
151 |
+
st.session_state['chat_history'].append((query, result))
|
152 |
+
else:
|
153 |
+
st.warning("Please enter a valid URL.")
|
154 |
+
else:
|
155 |
+
st.warning("Please enter a question.")
|
156 |
|
157 |
# Display chat history
|
158 |
for q, r in st.session_state['chat_history']:
|