Update app.py
Browse files
app.py
CHANGED
@@ -132,50 +132,53 @@ if st.button("Submit Query"):
|
|
132 |
elif not url_input:
|
133 |
st.warning("Please enter a valid URL in the sidebar.")
|
134 |
else:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
|
147 |
-
|
148 |
-
|
149 |
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
155 |
|
156 |
-
|
157 |
-
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
-
|
167 |
|
168 |
-
|
169 |
-
|
170 |
|
171 |
-
|
172 |
-
|
173 |
|
174 |
-
|
175 |
-
|
176 |
|
177 |
-
|
178 |
-
|
|
|
|
|
179 |
|
180 |
# Display chat history
|
181 |
for q, r in st.session_state['chat_history']:
|
|
|
132 |
elif not url_input:
|
133 |
st.warning("Please enter a valid URL in the sidebar.")
|
134 |
else:
|
135 |
+
try:
|
136 |
+
# Blog loading logic based on user input URL
|
137 |
+
loader = WebBaseLoader(
|
138 |
+
web_paths=(url_input,), # Use the user-input URL
|
139 |
+
bs_kwargs=dict(
|
140 |
+
parse_only=bs4.SoupStrainer() # Adjust based on the user's URL structure
|
141 |
+
),
|
142 |
+
)
|
143 |
+
docs = loader.load()
|
144 |
|
145 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=300)
|
146 |
+
splits = text_splitter.split_documents(docs)
|
147 |
|
148 |
+
# Initialize the embedding model
|
149 |
+
embedding_model = SentenceTransformerEmbedding('all-MiniLM-L6-v2')
|
150 |
|
151 |
+
# Initialize Chroma with the embedding class
|
152 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embedding_model)
|
153 |
|
154 |
+
# Retrieve and generate using the relevant snippets of the blog
|
155 |
+
retriever = vectorstore.as_retriever()
|
156 |
|
157 |
+
# Retrieve relevant documents
|
158 |
+
retrieved_docs = retriever.get_relevant_documents(query)
|
159 |
|
160 |
+
# Format the retrieved documents
|
161 |
+
def format_docs(docs):
|
162 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
163 |
|
164 |
+
context = format_docs(retrieved_docs)
|
165 |
|
166 |
+
# Initialize the language model
|
167 |
+
custom_llm = CustomLanguageModel()
|
168 |
|
169 |
+
# Initialize RAG chain using the prompt
|
170 |
+
prompt = RAGPrompt()
|
171 |
|
172 |
+
# Apply the prompt directly to the data (no chaining using `|`)
|
173 |
+
prompt_data = prompt({"question": query, "context": context})
|
174 |
|
175 |
+
# Generate the response using the language model, focusing on the answer from the retrieved context
|
176 |
+
result = custom_llm.generate(prompt_data["question"], prompt_data["context"])
|
177 |
|
178 |
+
# Store query and response in session for chat history
|
179 |
+
st.session_state['chat_history'].append((query, result))
|
180 |
+
except Exception as e:
|
181 |
+
st.error(f"An error occurred: {e}")
|
182 |
|
183 |
# Display chat history
|
184 |
for q, r in st.session_state['chat_history']:
|