datascientist22 commited on
Commit
b39d435
·
verified ·
1 Parent(s): ab5521c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -111,9 +111,8 @@ if 'chat_history' not in st.session_state:
111
  # CustomLanguageModel class with proper context argument
112
  class CustomLanguageModel:
113
  def generate(self, prompt, context):
114
- # This function should handle both prompt and context
115
- # For now, we return a placeholder response for demo purposes
116
- return f"Generated response based on '{prompt}' and context provided."
117
 
118
  # Submit button for chat
119
  if st.button("Submit Query"):
@@ -150,15 +149,19 @@ if st.button("Submit Query"):
150
  # Initialize the language model
151
  custom_llm = CustomLanguageModel()
152
 
 
 
 
 
153
  rag_chain = (
154
- {"context": retriever | format_docs, "question": RunnablePassthrough()}
155
  | prompt
156
- | custom_llm.generate # Adjust based on actual usage
157
  | StrOutputParser()
158
  )
159
 
160
  # Generate the answer using the user's query
161
- result = rag_chain.invoke(query)
162
 
163
  # Store query and response in session for chat history
164
  st.session_state['chat_history'].append((query, result))
 
111
  # CustomLanguageModel class with proper context argument
112
  class CustomLanguageModel:
113
  def generate(self, prompt, context):
114
+ # Implement logic to generate a response based on prompt and context
115
+ return f"Generated response based on prompt: '{prompt}' and context: '{context}'."
 
116
 
117
  # Submit button for chat
118
  if st.button("Submit Query"):
 
149
  # Initialize the language model
150
  custom_llm = CustomLanguageModel()
151
 
152
+ # Extract context from the retriever
153
+ retrieved_docs = retriever.retrieve(query)
154
+ context = format_docs(retrieved_docs)
155
+
156
  rag_chain = (
157
+ {"context": context, "question": query}
158
  | prompt
159
+ | (lambda data: custom_llm.generate(data["question"], data["context"]))
160
  | StrOutputParser()
161
  )
162
 
163
  # Generate the answer using the user's query
164
+ result = rag_chain.invoke({"question": query, "context": context})
165
 
166
  # Store query and response in session for chat history
167
  st.session_state['chat_history'].append((query, result))