Update app.py
Browse files
app.py
CHANGED
@@ -110,7 +110,12 @@ if 'chat_history' not in st.session_state:
|
|
110 |
class CustomLanguageModel:
|
111 |
def generate(self, prompt, context):
|
112 |
# Implement logic to generate a response based on prompt and context
|
113 |
-
return f"Generated response
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
# Define a callable class for RAGPrompt
|
116 |
class RAGPrompt:
|
@@ -163,7 +168,7 @@ if st.button("Submit Query"):
|
|
163 |
# Apply the prompt directly to the data (no chaining using `|`)
|
164 |
prompt_data = prompt({"question": query, "context": context})
|
165 |
|
166 |
-
# Generate the response using the language model
|
167 |
result = custom_llm.generate(prompt_data["question"], prompt_data["context"])
|
168 |
|
169 |
# Store query and response in session for chat history
|
|
|
110 |
class CustomLanguageModel:
|
111 |
def generate(self, prompt, context):
|
112 |
# Implement logic to generate a response based on prompt and context
|
113 |
+
return f"Generated response: '{prompt}'. Key points from the context: '{self.summarize_context(context)}'."
|
114 |
+
|
115 |
+
def summarize_context(self, context):
|
116 |
+
# Summarize the context to extract key information
|
117 |
+
# You could use an NLP summarization model for a more sophisticated approach
|
118 |
+
return " ".join(context.split()[:100]) # Returning the first 100 words as a simple summary
|
119 |
|
120 |
# Define a callable class for RAGPrompt
|
121 |
class RAGPrompt:
|
|
|
168 |
# Apply the prompt directly to the data (no chaining using `|`)
|
169 |
prompt_data = prompt({"question": query, "context": context})
|
170 |
|
171 |
+
# Generate the response using the language model, focusing on the answer from the retrieved context
|
172 |
result = custom_llm.generate(prompt_data["question"], prompt_data["context"])
|
173 |
|
174 |
# Store query and response in session for chat history
|