Spaces:
Sleeping
Sleeping
File size: 16,190 Bytes
4be1a5c 9ccf916 4be1a5c a9c2212 4be1a5c b5bf2c0 4be1a5c 657db0b 4be1a5c 657db0b 4be1a5c 657db0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# import requests
# import logging
# import duckdb
# import numpy as np
# from torch import cuda
# from gradio_huggingfacehub_search import HuggingfaceHubSearch
# from bertopic import BERTopic
# from bertopic.representation import KeyBERTInspired
# from umap import UMAP
# from hdbscan import HDBSCAN
# from sklearn.feature_extraction.text import CountVectorizer
# from sentence_transformers import SentenceTransformer
# from dotenv import load_dotenv
# import os
# import spaces
# import gradio as gr
# """
# TODOs:
# - Try for small dataset <1000 rows
# """
# load_dotenv()
# HF_TOKEN = os.getenv("HF_TOKEN")
# assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
# logging.basicConfig(
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
# )
# MAX_ROWS = 5_000
# CHUNK_SIZE = 1_000
# session = requests.Session()
# sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
# keybert = KeyBERTInspired()
# vectorizer_model = CountVectorizer(stop_words="english")
# representation_model = KeyBERTInspired()
# global_topic_model = None
# def get_split_rows(dataset, config, split):
# config_size = session.get(
# f"https://datasets-server.huggingface.co/size?dataset={dataset}&config={config}",
# timeout=20,
# ).json()
# if "error" in config_size:
# raise Exception(f"Error fetching config size: {config_size['error']}")
# split_size = next(
# (s for s in config_size["size"]["splits"] if s["split"] == split),
# None,
# )
# if split_size is None:
# raise Exception(f"Error fetching split {split} in config {config}")
# return split_size["num_rows"]
# def get_parquet_urls(dataset, config, split):
# parquet_files = session.get(
# f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
# timeout=20,
# ).json()
# if "error" in parquet_files:
# raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
# parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
# logging.debug(f"Parquet files: {parquet_urls}")
# return ",".join(f"'{url}'" for url in parquet_urls)
# def get_docs_from_parquet(parquet_urls, column, offset, limit):
# SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
# df = duckdb.sql(SQL_QUERY).to_df()
# logging.debug(f"Dataframe: {df.head(5)}")
# return df[column].tolist()
# @spaces.GPU
# def calculate_embeddings(docs):
# return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
# def calculate_n_neighbors_and_components(n_rows):
# n_neighbors = min(max(n_rows // 20, 15), 100)
# n_components = 10 if n_rows > 1000 else 5 # Higher components for larger datasets
# return n_neighbors, n_components
# @spaces.GPU
# def fit_model(docs, embeddings, n_neighbors, n_components):
# global global_topic_model
# umap_model = UMAP(
# n_neighbors=n_neighbors,
# n_components=n_components,
# min_dist=0.0,
# metric="cosine",
# random_state=42,
# )
# hdbscan_model = HDBSCAN(
# min_cluster_size=max(
# 5, n_neighbors // 2
# ), # Reducing min_cluster_size for fewer outliers
# metric="euclidean",
# cluster_selection_method="eom",
# prediction_data=True,
# )
# new_model = BERTopic(
# language="english",
# # Sub-models
# embedding_model=sentence_model,
# umap_model=umap_model,
# hdbscan_model=hdbscan_model,
# representation_model=representation_model,
# vectorizer_model=vectorizer_model,
# # Hyperparameters
# top_n_words=10,
# verbose=True,
# min_topic_size=n_neighbors, # Coherent with n_neighbors?
# )
# logging.info("Fitting new model")
# new_model.fit(docs, embeddings)
# logging.info("End fitting new model")
# global_topic_model = new_model
# logging.info("Global model updated")
# def generate_topics(dataset, config, split, column, nested_column):
# logging.info(
# f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
# )
# parquet_urls = get_parquet_urls(dataset, config, split)
# split_rows = get_split_rows(dataset, config, split)
# logging.info(f"Split rows: {split_rows}")
# limit = min(split_rows, MAX_ROWS)
# n_neighbors, n_components = calculate_n_neighbors_and_components(limit)
# reduce_umap_model = UMAP(
# n_neighbors=n_neighbors,
# n_components=2, # For visualization, keeping it at 2 (2D)
# min_dist=0.0,
# metric="cosine",
# random_state=42,
# )
# offset = 0
# rows_processed = 0
# base_model = None
# all_docs = []
# reduced_embeddings_list = []
# topics_info, topic_plot = None, None
# yield (
# gr.DataFrame(value=[], interactive=False, visible=True),
# gr.Plot(value=None, visible=True),
# gr.Label(
# {f"⚙️ Generating topics {dataset}": rows_processed / limit}, visible=True
# ),
# )
# while offset < limit:
# docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
# if not docs:
# break
# logging.info(
# f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
# )
# embeddings = calculate_embeddings(docs)
# fit_model(docs, embeddings, n_neighbors, n_components)
# if base_model is None:
# base_model = global_topic_model
# else:
# updated_model = BERTopic.merge_models([base_model, global_topic_model])
# nr_new_topics = len(set(updated_model.topics_)) - len(
# set(base_model.topics_)
# )
# new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
# logging.info(f"The following topics are newly found: {new_topics}")
# base_model = updated_model
# reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
# reduced_embeddings_list.append(reduced_embeddings)
# all_docs.extend(docs)
# topics_info = base_model.get_topic_info()
# topic_plot = base_model.visualize_documents(
# all_docs,
# reduced_embeddings=np.vstack(reduced_embeddings_list),
# custom_labels=True,
# )
# rows_processed += len(docs)
# progress = min(rows_processed / limit, 1.0)
# logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
# yield (
# topics_info,
# topic_plot,
# gr.Label({f"⚙️ Generating topics {dataset}": progress}, visible=True),
# )
# offset += CHUNK_SIZE
# logging.info("Finished processing all data")
# yield (
# topics_info,
# topic_plot,
# gr.Label({f"✅ Generating topics {dataset}": 1.0}, visible=True),
# )
# cuda.empty_cache()
# with gr.Blocks() as demo:
# gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
# gr.Markdown("## Select dataset and text column")
# with gr.Accordion("Data details", open=True):
# with gr.Row():
# with gr.Column(scale=3):
# dataset_name = HuggingfaceHubSearch(
# label="Hub Dataset ID",
# placeholder="Search for dataset id on Huggingface",
# search_type="dataset",
# )
# subset_dropdown = gr.Dropdown(label="Subset", visible=False)
# split_dropdown = gr.Dropdown(label="Split", visible=False)
# with gr.Accordion("Dataset preview", open=False):
# @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
# def embed(name, subset, split):
# html_code = f"""
# <iframe
# src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
# frameborder="0"
# width="100%"
# height="600px"
# ></iframe>
# """
# return gr.HTML(value=html_code)
# with gr.Row():
# text_column_dropdown = gr.Dropdown(label="Text column name")
# nested_text_column_dropdown = gr.Dropdown(
# label="Nested text column name", visible=False
# )
# generate_button = gr.Button("Generate Topics", variant="primary")
# gr.Markdown("## Datamap")
# full_topics_generation_label = gr.Label(visible=False, show_label=False)
# topics_plot = gr.Plot()
# with gr.Accordion("Topics Info", open=False):
# topics_df = gr.DataFrame(interactive=False, visible=True)
# generate_button.click(
# generate_topics,
# inputs=[
# dataset_name,
# subset_dropdown,
# split_dropdown,
# text_column_dropdown,
# nested_text_column_dropdown,
# ],
# outputs=[topics_df, topics_plot, full_topics_generation_label],
# )
# def _resolve_dataset_selection(
# dataset: str, default_subset: str, default_split: str, text_feature
# ):
# if "/" not in dataset.strip().strip("/"):
# return {
# subset_dropdown: gr.Dropdown(visible=False),
# split_dropdown: gr.Dropdown(visible=False),
# text_column_dropdown: gr.Dropdown(label="Text column name"),
# nested_text_column_dropdown: gr.Dropdown(visible=False),
# }
# info_resp = session.get(
# f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
# ).json()
# if "error" in info_resp:
# return {
# subset_dropdown: gr.Dropdown(visible=False),
# split_dropdown: gr.Dropdown(visible=False),
# text_column_dropdown: gr.Dropdown(label="Text column name"),
# nested_text_column_dropdown: gr.Dropdown(visible=False),
# }
# subsets: list[str] = list(info_resp["dataset_info"])
# subset = default_subset if default_subset in subsets else subsets[0]
# splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
# split = default_split if default_split in splits else splits[0]
# features = info_resp["dataset_info"][subset]["features"]
# def _is_string_feature(feature):
# return isinstance(feature, dict) and feature.get("dtype") == "string"
# text_features = [
# feature_name
# for feature_name, feature in features.items()
# if _is_string_feature(feature)
# ]
# nested_features = [
# feature_name
# for feature_name, feature in features.items()
# if isinstance(feature, dict)
# and isinstance(next(iter(feature.values())), dict)
# ]
# nested_text_features = [
# feature_name
# for feature_name in nested_features
# if any(
# _is_string_feature(nested_feature)
# for nested_feature in features[feature_name].values()
# )
# ]
# if not text_feature:
# return {
# subset_dropdown: gr.Dropdown(
# value=subset, choices=subsets, visible=len(subsets) > 1
# ),
# split_dropdown: gr.Dropdown(
# value=split, choices=splits, visible=len(splits) > 1
# ),
# text_column_dropdown: gr.Dropdown(
# choices=text_features + nested_text_features,
# label="Text column name",
# ),
# nested_text_column_dropdown: gr.Dropdown(visible=False),
# }
# if text_feature in nested_text_features:
# nested_keys = [
# feature_name
# for feature_name, feature in features[text_feature].items()
# if _is_string_feature(feature)
# ]
# return {
# subset_dropdown: gr.Dropdown(
# value=subset, choices=subsets, visible=len(subsets) > 1
# ),
# split_dropdown: gr.Dropdown(
# value=split, choices=splits, visible=len(splits) > 1
# ),
# text_column_dropdown: gr.Dropdown(
# choices=text_features + nested_text_features,
# label="Text column name",
# ),
# nested_text_column_dropdown: gr.Dropdown(
# value=nested_keys[0],
# choices=nested_keys,
# label="Nested text column name",
# visible=True,
# ),
# }
# return {
# subset_dropdown: gr.Dropdown(
# value=subset, choices=subsets, visible=len(subsets) > 1
# ),
# split_dropdown: gr.Dropdown(
# value=split, choices=splits, visible=len(splits) > 1
# ),
# text_column_dropdown: gr.Dropdown(
# choices=text_features + nested_text_features, label="Text column name"
# ),
# nested_text_column_dropdown: gr.Dropdown(visible=False),
# }
# @dataset_name.change(
# inputs=[dataset_name],
# outputs=[
# subset_dropdown,
# split_dropdown,
# text_column_dropdown,
# nested_text_column_dropdown,
# ],
# )
# def show_input_from_subset_dropdown(dataset: str) -> dict:
# return _resolve_dataset_selection(
# dataset, default_subset="default", default_split="train", text_feature=None
# )
# @subset_dropdown.change(
# inputs=[dataset_name, subset_dropdown],
# outputs=[
# subset_dropdown,
# split_dropdown,
# text_column_dropdown,
# nested_text_column_dropdown,
# ],
# )
# def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
# return _resolve_dataset_selection(
# dataset, default_subset=subset, default_split="train", text_feature=None
# )
# @split_dropdown.change(
# inputs=[dataset_name, subset_dropdown, split_dropdown],
# outputs=[
# subset_dropdown,
# split_dropdown,
# text_column_dropdown,
# nested_text_column_dropdown,
# ],
# )
# def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
# return _resolve_dataset_selection(
# dataset, default_subset=subset, default_split=split, text_feature=None
# )
# @text_column_dropdown.change(
# inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
# outputs=[
# subset_dropdown,
# split_dropdown,
# text_column_dropdown,
# nested_text_column_dropdown,
# ],
# )
# def show_input_from_text_column_dropdown(
# dataset: str, subset: str, split: str, text_column
# ) -> dict:
# return _resolve_dataset_selection(
# dataset,
# default_subset=subset,
# default_split=split,
# text_feature=text_column,
# )
# demo.launch()
import gradio as gr
# Full HTML content
html_content = """
<h1 style="color: blue;">Welcome to My Gradio App</h1>
<p>This is a paragraph with <b>bold</b> and <i>italic</i> text.</p>
<ul>
<li>First item</li>
<li>Second item</li>
<li>Third item</li>
</ul>
<img src="https://via.placeholder.com/150" alt="Sample Image">
"""
# Create a Gradio interface
with gr.Blocks() as demo:
gr.HTML(html_content)
# Launch the app
demo.launch()
|