File size: 2,478 Bytes
c272710
 
e96de95
44cfcd2
 
c272710
 
 
 
 
 
 
 
 
 
 
44cfcd2
 
 
c272710
 
 
 
44cfcd2
 
 
 
 
c272710
 
 
 
44cfcd2
c272710
 
44cfcd2
 
c272710
 
44cfcd2
 
c272710
 
44cfcd2
 
c272710
 
44cfcd2
 
 
 
 
 
 
 
 
c272710
 
 
44cfcd2
 
c272710
 
 
44cfcd2
 
c272710
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os

import streamlit as st
from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationSummaryMemory
from streamlit_chat import message
from dotenv import load_dotenv


load_dotenv()

if "conversation" not in st.session_state:
    st.session_state["conversation"] = None
if "messages" not in st.session_state:
    st.session_state["messages"] = []

# Setting page title and header
st.set_page_config(page_title="Chat GPT Clone", page_icon=":robot_face:")
st.markdown(
    "<h1 style='text-align: center;'>How can I assist you? </h1>",
    unsafe_allow_html=True,
)


st.sidebar.title("😎")
summarise_button = st.sidebar.button("Summarise the conversation", key="summarise")
if summarise_button:
    summarise_placeholder = st.sidebar.write(
        "Nice chatting with you my friend ❤️:\n\n"
        + st.session_state["conversation"].memory.buffer
    )

def getresponse(userInput: str):
    if st.session_state["conversation"] is None:
        llm = OpenAI(
            temperature=0,
            openai_api_key=os.getenv("OPENAI_API_KEY"),
            model_name="text-davinci-003",  # we can also use 'gpt-3.5-turbo'
        )

        st.session_state["conversation"] = ConversationChain(
            llm=llm, verbose=True, memory=ConversationSummaryMemory(llm=llm)
        )

    response = st.session_state["conversation"].predict(input=userInput)
    print(st.session_state["conversation"].memory.buffer)

    return response


response_container = st.container()
container = st.container()


with container:
    with st.form(key="my_form", clear_on_submit=True):
        user_input = st.text_area("Your question goes here:", key="input", height=100)
        submit_button = st.form_submit_button(label="Send")

        if submit_button:
            st.session_state["messages"].append(user_input)
            model_response = getresponse(user_input)
            st.session_state["messages"].append(model_response)

            with response_container:
                for i in range(len(st.session_state["messages"])):
                    if (i % 2) == 0:
                        message(
                            st.session_state["messages"][i],
                            is_user=True,
                            key=str(i) + "_user",
                        )
                    else:
                        message(st.session_state["messages"][i], key=str(i) + "_AI")