Spaces:
Runtime error
Runtime error
File size: 2,131 Bytes
be482eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
from dotenv import load_dotenv
import streamlit as st
from user_utils import *
#Creating session variables
if 'HR_tickets' not in st.session_state:
st.session_state['HR_tickets'] =[]
if 'IT_tickets' not in st.session_state:
st.session_state['IT_tickets'] =[]
if 'Transport_tickets' not in st.session_state:
st.session_state['Transport_tickets'] =[]
load_dotenv()
def main():
st.header("Automatic Ticket Classification Tool")
#Capture user input
st.write("We are here to help you, please ask your question:")
user_input = st.text_input("π")
if user_input:
#creating embeddings instance
embeddings=create_embeddings()
#Function to pull index data from Pinecone
index=pull_from_pinecone(embeddings)
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index
relavant_docs=get_similar_docs(index,user_input)
#This will return the fine tuned response by LLM
response=get_answer(relavant_docs,user_input)
st.write(response)
#Button to create a ticket with respective department
button = st.button("Submit ticket?")
if button:
#Get Response
embeddings = create_embeddings()
query_result = embeddings.embed_query(user_input)
#loading the ML model, so that we can use it to predit the class to which this compliant belongs to...
department_value = predict(query_result)
st.write("your ticket has been sumbitted to : "+department_value)
#Appending the tickets to below list, so that we can view/use them later on...
if department_value=="HR":
st.session_state['HR_tickets'].append(user_input)
elif department_value=="IT":
st.session_state['IT_tickets'].append(user_input)
else:
st.session_state['Transport_tickets'].append(user_input)
if __name__ == '__main__':
main()
|