Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import pinecone | |
from dotenv import load_dotenv | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.embeddings.sentence_transformer import \ | |
SentenceTransformerEmbeddings | |
from langchain.llms import OpenAI | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Pinecone | |
from pypdf import PdfReader | |
from sklearn.model_selection import train_test_split | |
from functools import lru_cache | |
#**********Functions to help you load documents to PINECONE*********** | |
#Read PDF data | |
def read_pdf_data(pdf_file): | |
pdf_page = PdfReader(pdf_file) | |
text = "" | |
for page in pdf_page.pages: | |
text += page.extract_text() | |
return text | |
#Split data into chunks | |
def split_data(text): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50) | |
docs = text_splitter.split_text(text) | |
docs_chunks =text_splitter.create_documents(docs) | |
return docs_chunks | |
#Create embeddings instance | |
def create_embeddings_load_data(): | |
#embeddings = OpenAIEmbeddings() | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
return embeddings | |
def pine_cone_index(pinecone_index_name: str | None): | |
load_dotenv() | |
pinecone.init( | |
api_key=os.getenv('PINECONE_API_KEY'), | |
environment=os.getenv('PINECONE_ENV'), | |
) | |
index_name = pinecone_index_name or os.getenv('PINECONE_INDEX_NAME') | |
if index_name is None: | |
raise ValueError('PINECONE_INDEX_NAME is not set') | |
return index_name | |
def push_to_pinecone(embeddings,docs,pinecone_index_name: str | None=None): | |
index_name = pine_cone_index(pinecone_index_name) | |
index = Pinecone.from_documents(docs, embeddings, index_name=index_name) | |
return index | |
#*********Functions for dealing with Model related tasks...************ | |
#Read dataset for model creation | |
def read_data(data): | |
df = pd.read_csv(data,delimiter=',', header=None) | |
return df | |
#Create embeddings instance | |
def get_embeddings(): | |
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
return embeddings | |
#Generating embeddings for our input dataset | |
def create_embeddings(df,embeddings): | |
df[2] = df[0].apply(lambda x: embeddings.embed_query(x)) | |
return df | |
#Splitting the data into train & test | |
def split_train_test__data(df_sample): | |
# Split into training and testing sets | |
sentences_train, sentences_test, labels_train, labels_test = train_test_split( | |
list(df_sample[2]), list(df_sample[1]), test_size=0.25, random_state=0) | |
print(len(sentences_train)) | |
return sentences_train, sentences_test, labels_train, labels_test | |
#Get the accuracy score on test data | |
def get_score(svm_classifier,sentences_test,labels_test): | |
score = svm_classifier.score(sentences_test, labels_test) | |
return score | |