Upload 5 files
Browse files- .gitignore +177 -0
- app.py +235 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by https://www.toptal.com/developers/gitignore/api/python
|
2 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=python
|
3 |
+
|
4 |
+
### Python ###
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
165 |
+
|
166 |
+
### Python Patch ###
|
167 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
168 |
+
poetry.toml
|
169 |
+
|
170 |
+
# ruff
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# LSP config files
|
174 |
+
pyrightconfig.json
|
175 |
+
|
176 |
+
# .env file
|
177 |
+
.env
|
app.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from snac import SNAC
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Check if CUDA is available
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
|
13 |
+
print("Loading SNAC model...")
|
14 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
15 |
+
snac_model = snac_model.to(device)
|
16 |
+
|
17 |
+
model_name = "datatab/aida-parla-16bit-v1"
|
18 |
+
|
19 |
+
# Download only model config and safetensors
|
20 |
+
snapshot_download(
|
21 |
+
repo_id=model_name,
|
22 |
+
allow_patterns=[
|
23 |
+
"config.json",
|
24 |
+
"*.safetensors",
|
25 |
+
"model.safetensors.index.json",
|
26 |
+
],
|
27 |
+
ignore_patterns=[
|
28 |
+
"optimizer.pt",
|
29 |
+
"pytorch_model.bin",
|
30 |
+
"training_args.bin",
|
31 |
+
"scheduler.pt",
|
32 |
+
"tokenizer.json",
|
33 |
+
"tokenizer_config.json",
|
34 |
+
"special_tokens_map.json",
|
35 |
+
"vocab.json",
|
36 |
+
"merges.txt",
|
37 |
+
"tokenizer.*"
|
38 |
+
]
|
39 |
+
)
|
40 |
+
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
42 |
+
model.to(device)
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
+
print(f"Orpheus model loaded to {device}")
|
45 |
+
|
46 |
+
# Process text prompt
|
47 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
48 |
+
prompt = f"{voice}: {prompt}"
|
49 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
50 |
+
|
51 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
52 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
53 |
+
|
54 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
55 |
+
|
56 |
+
# No padding needed for single input
|
57 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
58 |
+
|
59 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
60 |
+
|
61 |
+
# Parse output tokens to audio
|
62 |
+
def parse_output(generated_ids):
|
63 |
+
token_to_find = 128257
|
64 |
+
token_to_remove = 128258
|
65 |
+
|
66 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
67 |
+
|
68 |
+
if len(token_indices[1]) > 0:
|
69 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
70 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
71 |
+
else:
|
72 |
+
cropped_tensor = generated_ids
|
73 |
+
|
74 |
+
processed_rows = []
|
75 |
+
for row in cropped_tensor:
|
76 |
+
masked_row = row[row != token_to_remove]
|
77 |
+
processed_rows.append(masked_row)
|
78 |
+
|
79 |
+
code_lists = []
|
80 |
+
for row in processed_rows:
|
81 |
+
row_length = row.size(0)
|
82 |
+
new_length = (row_length // 7) * 7
|
83 |
+
trimmed_row = row[:new_length]
|
84 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
85 |
+
code_lists.append(trimmed_row)
|
86 |
+
|
87 |
+
return code_lists[0] # Return just the first one for single sample
|
88 |
+
|
89 |
+
# Redistribute codes for audio generation
|
90 |
+
def redistribute_codes(code_list, snac_model):
|
91 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
92 |
+
|
93 |
+
layer_1 = []
|
94 |
+
layer_2 = []
|
95 |
+
layer_3 = []
|
96 |
+
for i in range((len(code_list)+1)//7):
|
97 |
+
layer_1.append(code_list[7*i])
|
98 |
+
layer_2.append(code_list[7*i+1]-4096)
|
99 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
100 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
101 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
102 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
103 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
104 |
+
|
105 |
+
# Move tensors to the same device as the SNAC model
|
106 |
+
codes = [
|
107 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
108 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
109 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
110 |
+
]
|
111 |
+
|
112 |
+
audio_hat = snac_model.decode(codes)
|
113 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
114 |
+
|
115 |
+
# Main generation function
|
116 |
+
@spaces.GPU()
|
117 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
118 |
+
if not text.strip():
|
119 |
+
return None
|
120 |
+
|
121 |
+
try:
|
122 |
+
progress(0.1, "Procesuirnje Teksta...")
|
123 |
+
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
124 |
+
|
125 |
+
progress(0.3, "Generisanje Tokena Govora...")
|
126 |
+
with torch.no_grad():
|
127 |
+
generated_ids = model.generate(
|
128 |
+
input_ids=input_ids,
|
129 |
+
attention_mask=attention_mask,
|
130 |
+
max_new_tokens=max_new_tokens,
|
131 |
+
do_sample=True,
|
132 |
+
temperature=temperature,
|
133 |
+
top_p=top_p,
|
134 |
+
repetition_penalty=repetition_penalty,
|
135 |
+
num_return_sequences=1,
|
136 |
+
eos_token_id=128258,
|
137 |
+
)
|
138 |
+
|
139 |
+
progress(0.6, "Procesuirnje tokena govora...")
|
140 |
+
code_list = parse_output(generated_ids)
|
141 |
+
|
142 |
+
progress(0.8, "Konverzija u audio...")
|
143 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
144 |
+
|
145 |
+
return (24000, audio_samples) # Return sample rate and audio
|
146 |
+
except Exception as e:
|
147 |
+
print(f"Error generating speech: {e}")
|
148 |
+
return None
|
149 |
+
|
150 |
+
# UI config
|
151 |
+
primeri = [
|
152 |
+
["Sastanak je tačno u 5 sati, nemoj da kasniš.", "alek", 0.1, 0.85, 1.6, 2048],
|
153 |
+
["Ono kada imamo 60 raznih primera samo dokazuje hipotezu.", "alek", 0.1, 0.85, 1.6, 2048],
|
154 |
+
["Unesite svoj tekst ispod i poslušajte ga pretvorenog u prirodan govor pomoću Aida TTS modela.", "alek", 0.1, 0.85, 1.6, 2048],
|
155 |
+
]
|
156 |
+
|
157 |
+
VOICES = ["alek", "arsa", "janko", "bora", "zoki", "mila", "mia", "senka", "judita", "saska", "goga"]
|
158 |
+
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
|
159 |
+
|
160 |
+
# Create Gradio interface
|
161 |
+
with gr.Blocks(title="AiDA Text-to-Speech") as demo:
|
162 |
+
gr.Markdown(f"""
|
163 |
+
# 🎵 [AiDA Text-to-Speech](https://aida.guru)
|
164 |
+
Unesite tekst ispod i uradite konverziju u prirodni govor pomoću AiDA TTS modela.
|
165 |
+
|
166 |
+
## Savet za bolji prompt:
|
167 |
+
- Povećanje `repetition_penalty` i `temperature` omogućava da model govori brže.
|
168 |
+
""")
|
169 |
+
with gr.Row():
|
170 |
+
with gr.Column(scale=3):
|
171 |
+
text_input = gr.Textbox(
|
172 |
+
label="Tekst za izgovor",
|
173 |
+
placeholder="Unesite Vaš tekst ovde...",
|
174 |
+
lines=5
|
175 |
+
)
|
176 |
+
voice = gr.Dropdown(
|
177 |
+
choices=VOICES,
|
178 |
+
value="mila",
|
179 |
+
label="Glasovi"
|
180 |
+
)
|
181 |
+
|
182 |
+
with gr.Accordion("Napredna Podešavanja", open=False):
|
183 |
+
temperature = gr.Slider(
|
184 |
+
minimum=0.01, maximum=1.5, value=0.1, step=0.05,
|
185 |
+
label="Temperature",
|
186 |
+
info="Više vrednosti (0,7-1,0) stvaraju ekspresivniji, ali manje stabilan govor"
|
187 |
+
)
|
188 |
+
top_p = gr.Slider(
|
189 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
190 |
+
label="Top P",
|
191 |
+
info="Prag uzorkovanja jezgra"
|
192 |
+
)
|
193 |
+
repetition_penalty = gr.Slider(
|
194 |
+
minimum=1.0, maximum=2.0, value=1.6, step=0.05,
|
195 |
+
label="Repetition Penalty",
|
196 |
+
info="Više vrednosti smanjuju ponavljajuće obrasce"
|
197 |
+
)
|
198 |
+
max_new_tokens = gr.Slider(
|
199 |
+
minimum=100, maximum=4096, value=2048, step=100,
|
200 |
+
label="Max Length",
|
201 |
+
info="Maksimalna dužina generisanog zvuka (u tokenima)"
|
202 |
+
)
|
203 |
+
|
204 |
+
with gr.Row():
|
205 |
+
submit_btn = gr.Button("Kreiraj Govor", variant="primary")
|
206 |
+
clear_btn = gr.Button("Obriši")
|
207 |
+
|
208 |
+
with gr.Column(scale=2):
|
209 |
+
audio_output = gr.Audio(label="Kreiran Govor", type="numpy")
|
210 |
+
|
211 |
+
# Set up examples
|
212 |
+
gr.Examples(
|
213 |
+
examples=primeri,
|
214 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
215 |
+
outputs=audio_output,
|
216 |
+
fn=generate_speech,
|
217 |
+
cache_examples=True,
|
218 |
+
)
|
219 |
+
|
220 |
+
# Set up event handlers
|
221 |
+
submit_btn.click(
|
222 |
+
fn=generate_speech,
|
223 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
224 |
+
outputs=audio_output
|
225 |
+
)
|
226 |
+
|
227 |
+
clear_btn.click(
|
228 |
+
fn=lambda: (None, None),
|
229 |
+
inputs=[],
|
230 |
+
outputs=[text_input, audio_output]
|
231 |
+
)
|
232 |
+
|
233 |
+
# Launch the app
|
234 |
+
if __name__ == "__main__":
|
235 |
+
demo.queue().launch(share=False, ssr_mode=False)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
snac
|
2 |
+
python-dotenv
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
spaces
|