File size: 5,941 Bytes
c5b5437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import cv2
import math
import paddle

from arch import style_text_rec
from utils.sys_funcs import check_gpu
from utils.logging import get_logger


class StyleTextRecPredictor(object):
    def __init__(self, config):
        algorithm = config['Predictor']['algorithm']
        assert algorithm in ["StyleTextRec"
                             ], "Generator {} not supported.".format(algorithm)
        use_gpu = config["Global"]['use_gpu']
        check_gpu(use_gpu)
        paddle.set_device('gpu' if use_gpu else 'cpu')
        self.logger = get_logger()
        self.generator = getattr(style_text_rec, algorithm)(config)
        self.height = config["Global"]["image_height"]
        self.width = config["Global"]["image_width"]
        self.scale = config["Predictor"]["scale"]
        self.mean = config["Predictor"]["mean"]
        self.std = config["Predictor"]["std"]
        self.expand_result = config["Predictor"]["expand_result"]

    def reshape_to_same_height(self, img_list):
        h = img_list[0].shape[0]
        for idx in range(1, len(img_list)):
            new_w = round(1.0 * img_list[idx].shape[1] /
                          img_list[idx].shape[0] * h)
            img_list[idx] = cv2.resize(img_list[idx], (new_w, h))
        return img_list

    def predict_single_image(self, style_input, text_input):
        style_input = self.rep_style_input(style_input, text_input)
        tensor_style_input = self.preprocess(style_input)
        tensor_text_input = self.preprocess(text_input)
        style_text_result = self.generator.forward(tensor_style_input,
                                                   tensor_text_input)
        fake_fusion = self.postprocess(style_text_result["fake_fusion"])
        fake_text = self.postprocess(style_text_result["fake_text"])
        fake_sk = self.postprocess(style_text_result["fake_sk"])
        fake_bg = self.postprocess(style_text_result["fake_bg"])
        bbox = self.get_text_boundary(fake_text)
        if bbox:
            left, right, top, bottom = bbox
            fake_fusion = fake_fusion[top:bottom, left:right, :]
            fake_text = fake_text[top:bottom, left:right, :]
            fake_sk = fake_sk[top:bottom, left:right, :]
            fake_bg = fake_bg[top:bottom, left:right, :]

        # fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text)
        return {
            "fake_fusion": fake_fusion,
            "fake_text": fake_text,
            "fake_sk": fake_sk,
            "fake_bg": fake_bg,
        }

    def predict(self, style_input, text_input_list):
        if not isinstance(text_input_list, (tuple, list)):
            return self.predict_single_image(style_input, text_input_list)

        synth_result_list = []
        for text_input in text_input_list:
            synth_result = self.predict_single_image(style_input, text_input)
            synth_result_list.append(synth_result)

        for key in synth_result:
            res = [r[key] for r in synth_result_list]
            res = self.reshape_to_same_height(res)
            synth_result[key] = np.concatenate(res, axis=1)
        return synth_result

    def preprocess(self, img):
        img = (img.astype('float32') * self.scale - self.mean) / self.std
        img_height, img_width, channel = img.shape
        assert channel == 3, "Please use an rgb image."
        ratio = img_width / float(img_height)
        if math.ceil(self.height * ratio) > self.width:
            resized_w = self.width
        else:
            resized_w = int(math.ceil(self.height * ratio))
        img = cv2.resize(img, (resized_w, self.height))

        new_img = np.zeros([self.height, self.width, 3]).astype('float32')
        new_img[:, 0:resized_w, :] = img
        img = new_img.transpose((2, 0, 1))
        img = img[np.newaxis, :, :, :]
        return paddle.to_tensor(img)

    def postprocess(self, tensor):
        img = tensor.numpy()[0]
        img = img.transpose((1, 2, 0))
        img = (img * self.std + self.mean) / self.scale
        img = np.maximum(img, 0.0)
        img = np.minimum(img, 255.0)
        img = img.astype('uint8')
        return img

    def rep_style_input(self, style_input, text_input):
        rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) /
                      (style_input.shape[1] / style_input.shape[0])) + 1
        style_input = np.tile(style_input, reps=[1, rep_num, 1])
        max_width = int(self.width / self.height * style_input.shape[0])
        style_input = style_input[:, :max_width, :]
        return style_input

    def get_text_boundary(self, text_img):
        img_height = text_img.shape[0]
        img_width = text_img.shape[1]
        bounder = 3
        text_canny_img = cv2.Canny(text_img, 10, 20)
        edge_num_h = text_canny_img.sum(axis=0)
        no_zero_list_h = np.where(edge_num_h > 0)[0]
        edge_num_w = text_canny_img.sum(axis=1)
        no_zero_list_w = np.where(edge_num_w > 0)[0]
        if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0:
            return None
        left = max(no_zero_list_h[0] - bounder, 0)
        right = min(no_zero_list_h[-1] + bounder, img_width)
        top = max(no_zero_list_w[0] - bounder, 0)
        bottom = min(no_zero_list_w[-1] + bounder, img_height)
        return [left, right, top, bottom]