File size: 11,699 Bytes
c5b5437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import random
import pyclipper
import paddle

import numpy as np
from ppocr.utils.utility import check_install

import scipy.io as scio

from PIL import Image
import paddle.vision.transforms as transforms


class RandomScale():
    def __init__(self, short_size=640, **kwargs):
        self.short_size = short_size

    def scale_aligned(self, img, scale):
        oh, ow = img.shape[0:2]
        h = int(oh * scale + 0.5)
        w = int(ow * scale + 0.5)
        if h % 32 != 0:
            h = h + (32 - h % 32)
        if w % 32 != 0:
            w = w + (32 - w % 32)
        img = cv2.resize(img, dsize=(w, h))
        factor_h = h / oh
        factor_w = w / ow
        return img, factor_h, factor_w

    def __call__(self, data):
        img = data['image']

        h, w = img.shape[0:2]
        random_scale = np.array([0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3])
        scale = (np.random.choice(random_scale) * self.short_size) / min(h, w)
        img, factor_h, factor_w = self.scale_aligned(img, scale)

        data['scale_factor'] = (factor_w, factor_h)
        data['image'] = img
        return data


class MakeShrink():
    def __init__(self, kernel_scale=0.7, **kwargs):
        self.kernel_scale = kernel_scale

    def dist(self, a, b):
        return np.linalg.norm((a - b), ord=2, axis=0)

    def perimeter(self, bbox):
        peri = 0.0
        for i in range(bbox.shape[0]):
            peri += self.dist(bbox[i], bbox[(i + 1) % bbox.shape[0]])
        return peri

    def shrink(self, bboxes, rate, max_shr=20):
        check_install('Polygon', 'Polygon3')
        import Polygon as plg
        rate = rate * rate
        shrinked_bboxes = []
        for bbox in bboxes:
            area = plg.Polygon(bbox).area()
            peri = self.perimeter(bbox)

            try:
                pco = pyclipper.PyclipperOffset()
                pco.AddPath(bbox, pyclipper.JT_ROUND,
                            pyclipper.ET_CLOSEDPOLYGON)
                offset = min(
                    int(area * (1 - rate) / (peri + 0.001) + 0.5), max_shr)

                shrinked_bbox = pco.Execute(-offset)
                if len(shrinked_bbox) == 0:
                    shrinked_bboxes.append(bbox)
                    continue

                shrinked_bbox = np.array(shrinked_bbox[0])
                if shrinked_bbox.shape[0] <= 2:
                    shrinked_bboxes.append(bbox)
                    continue

                shrinked_bboxes.append(shrinked_bbox)
            except Exception as e:
                shrinked_bboxes.append(bbox)

        return shrinked_bboxes

    def __call__(self, data):
        img = data['image']
        bboxes = data['polys']
        words = data['texts']
        scale_factor = data['scale_factor']

        gt_instance = np.zeros(img.shape[0:2], dtype='uint8')  # h,w
        training_mask = np.ones(img.shape[0:2], dtype='uint8')
        training_mask_distance = np.ones(img.shape[0:2], dtype='uint8')

        for i in range(len(bboxes)):
            bboxes[i] = np.reshape(bboxes[i] * (
                [scale_factor[0], scale_factor[1]] * (bboxes[i].shape[0] // 2)),
                                   (bboxes[i].shape[0] // 2, 2)).astype('int32')

        for i in range(len(bboxes)):
            #different value for different bbox
            cv2.drawContours(gt_instance, [bboxes[i]], -1, i + 1, -1)

            # set training mask to 0
            cv2.drawContours(training_mask, [bboxes[i]], -1, 0, -1)

            # for not accurate annotation, use training_mask_distance
            if words[i] == '###' or words[i] == '???':
                cv2.drawContours(training_mask_distance, [bboxes[i]], -1, 0, -1)

        # make shrink
        gt_kernel_instance = np.zeros(img.shape[0:2], dtype='uint8')
        kernel_bboxes = self.shrink(bboxes, self.kernel_scale)
        for i in range(len(bboxes)):
            cv2.drawContours(gt_kernel_instance, [kernel_bboxes[i]], -1, i + 1,
                             -1)

            # for training mask, kernel and background= 1, box region=0
            if words[i] != '###' and words[i] != '???':
                cv2.drawContours(training_mask, [kernel_bboxes[i]], -1, 1, -1)

        gt_kernel = gt_kernel_instance.copy()
        # for gt_kernel, kernel = 1
        gt_kernel[gt_kernel > 0] = 1

        # shrink 2 times
        tmp1 = gt_kernel_instance.copy()
        erode_kernel = np.ones((3, 3), np.uint8)
        tmp1 = cv2.erode(tmp1, erode_kernel, iterations=1)
        tmp2 = tmp1.copy()
        tmp2 = cv2.erode(tmp2, erode_kernel, iterations=1)

        # compute text region
        gt_kernel_inner = tmp1 - tmp2

        # gt_instance: text instance, bg=0, diff word use diff value
        # training_mask: text instance mask, word=0,kernel and bg=1
        # gt_kernel_instance: text kernel instance, bg=0, diff word use diff value
        # gt_kernel: text_kernel, bg=0,diff word use same value
        # gt_kernel_inner: text kernel reference
        # training_mask_distance: word without anno = 0, else 1

        data['image'] = [
            img, gt_instance, training_mask, gt_kernel_instance, gt_kernel,
            gt_kernel_inner, training_mask_distance
        ]
        return data


class GroupRandomHorizontalFlip():
    def __init__(self, p=0.5, **kwargs):
        self.p = p

    def __call__(self, data):
        imgs = data['image']

        if random.random() < self.p:
            for i in range(len(imgs)):
                imgs[i] = np.flip(imgs[i], axis=1).copy()
        data['image'] = imgs
        return data


class GroupRandomRotate():
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        imgs = data['image']

        max_angle = 10
        angle = random.random() * 2 * max_angle - max_angle
        for i in range(len(imgs)):
            img = imgs[i]
            w, h = img.shape[:2]
            rotation_matrix = cv2.getRotationMatrix2D((h / 2, w / 2), angle, 1)
            img_rotation = cv2.warpAffine(
                img, rotation_matrix, (h, w), flags=cv2.INTER_NEAREST)
            imgs[i] = img_rotation

        data['image'] = imgs
        return data


class GroupRandomCropPadding():
    def __init__(self, target_size=(640, 640), **kwargs):
        self.target_size = target_size

    def __call__(self, data):
        imgs = data['image']

        h, w = imgs[0].shape[0:2]
        t_w, t_h = self.target_size
        p_w, p_h = self.target_size
        if w == t_w and h == t_h:
            return data

        t_h = t_h if t_h < h else h
        t_w = t_w if t_w < w else w

        if random.random() > 3.0 / 8.0 and np.max(imgs[1]) > 0:
            # make sure to crop the text region
            tl = np.min(np.where(imgs[1] > 0), axis=1) - (t_h, t_w)
            tl[tl < 0] = 0
            br = np.max(np.where(imgs[1] > 0), axis=1) - (t_h, t_w)
            br[br < 0] = 0
            br[0] = min(br[0], h - t_h)
            br[1] = min(br[1], w - t_w)

            i = random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
            j = random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
        else:
            i = random.randint(0, h - t_h) if h - t_h > 0 else 0
            j = random.randint(0, w - t_w) if w - t_w > 0 else 0

        n_imgs = []
        for idx in range(len(imgs)):
            if len(imgs[idx].shape) == 3:
                s3_length = int(imgs[idx].shape[-1])
                img = imgs[idx][i:i + t_h, j:j + t_w, :]
                img_p = cv2.copyMakeBorder(
                    img,
                    0,
                    p_h - t_h,
                    0,
                    p_w - t_w,
                    borderType=cv2.BORDER_CONSTANT,
                    value=tuple(0 for i in range(s3_length)))
            else:
                img = imgs[idx][i:i + t_h, j:j + t_w]
                img_p = cv2.copyMakeBorder(
                    img,
                    0,
                    p_h - t_h,
                    0,
                    p_w - t_w,
                    borderType=cv2.BORDER_CONSTANT,
                    value=(0, ))
            n_imgs.append(img_p)

        data['image'] = n_imgs
        return data


class MakeCentripetalShift():
    def __init__(self, **kwargs):
        pass

    def jaccard(self, As, Bs):
        A = As.shape[0]  # small
        B = Bs.shape[0]  # large

        dis = np.sqrt(
            np.sum((As[:, np.newaxis, :].repeat(
                B, axis=1) - Bs[np.newaxis, :, :].repeat(
                    A, axis=0))**2,
                   axis=-1))

        ind = np.argmin(dis, axis=-1)

        return ind

    def __call__(self, data):
        imgs = data['image']

        img, gt_instance, training_mask, gt_kernel_instance, gt_kernel, gt_kernel_inner, training_mask_distance = \
                        imgs[0], imgs[1], imgs[2], imgs[3], imgs[4], imgs[5], imgs[6]

        max_instance = np.max(gt_instance)  # num bbox

        # make centripetal shift
        gt_distance = np.zeros((2, *img.shape[0:2]), dtype=np.float32)
        for i in range(1, max_instance + 1):
            # kernel_reference
            ind = (gt_kernel_inner == i)

            if np.sum(ind) == 0:
                training_mask[gt_instance == i] = 0
                training_mask_distance[gt_instance == i] = 0
                continue

            kpoints = np.array(np.where(ind)).transpose(
                (1, 0))[:, ::-1].astype('float32')

            ind = (gt_instance == i) * (gt_kernel_instance == 0)
            if np.sum(ind) == 0:
                continue
            pixels = np.where(ind)

            points = np.array(pixels).transpose(
                (1, 0))[:, ::-1].astype('float32')

            bbox_ind = self.jaccard(points, kpoints)

            offset_gt = kpoints[bbox_ind] - points

            gt_distance[:, pixels[0], pixels[1]] = offset_gt.T * 0.1

        img = Image.fromarray(img)
        img = img.convert('RGB')

        data["image"] = img
        data["gt_kernel"] = gt_kernel.astype("int64")
        data["training_mask"] = training_mask.astype("int64")
        data["gt_instance"] = gt_instance.astype("int64")
        data["gt_kernel_instance"] = gt_kernel_instance.astype("int64")
        data["training_mask_distance"] = training_mask_distance.astype("int64")
        data["gt_distance"] = gt_distance.astype("float32")

        return data


class ScaleAlignedShort():
    def __init__(self, short_size=640, **kwargs):
        self.short_size = short_size

    def __call__(self, data):
        img = data['image']

        org_img_shape = img.shape

        h, w = img.shape[0:2]
        scale = self.short_size * 1.0 / min(h, w)
        h = int(h * scale + 0.5)
        w = int(w * scale + 0.5)
        if h % 32 != 0:
            h = h + (32 - h % 32)
        if w % 32 != 0:
            w = w + (32 - w % 32)
        img = cv2.resize(img, dsize=(w, h))

        new_img_shape = img.shape
        img_shape = np.array(org_img_shape + new_img_shape)

        data['shape'] = img_shape
        data['image'] = img

        return data