Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
from arch.base_module import SNConv, SNConvTranspose, ResBlock | |
class Decoder(nn.Layer): | |
def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer, | |
act, act_attr, conv_block_dropout, conv_block_num, | |
conv_block_dilation, out_conv_act, out_conv_act_attr): | |
super(Decoder, self).__init__() | |
conv_blocks = [] | |
for i in range(conv_block_num): | |
conv_blocks.append( | |
ResBlock( | |
name="{}_conv_block_{}".format(name, i), | |
channels=encode_dim * 8, | |
norm_layer=norm_layer, | |
use_dropout=conv_block_dropout, | |
use_dilation=conv_block_dilation, | |
use_bias=use_bias)) | |
self.conv_blocks = nn.Sequential(*conv_blocks) | |
self._up1 = SNConvTranspose( | |
name=name + "_up1", | |
in_channels=encode_dim * 8, | |
out_channels=encode_dim * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up2 = SNConvTranspose( | |
name=name + "_up2", | |
in_channels=encode_dim * 4, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up3 = SNConvTranspose( | |
name=name + "_up3", | |
in_channels=encode_dim * 2, | |
out_channels=encode_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate") | |
self._out_conv = SNConv( | |
name=name + "_out_conv", | |
in_channels=encode_dim, | |
out_channels=out_channels, | |
kernel_size=3, | |
use_bias=use_bias, | |
norm_layer=None, | |
act=out_conv_act, | |
act_attr=out_conv_act_attr) | |
def forward(self, x): | |
if isinstance(x, (list, tuple)): | |
x = paddle.concat(x, axis=1) | |
output_dict = dict() | |
output_dict["conv_blocks"] = self.conv_blocks.forward(x) | |
output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"]) | |
output_dict["up2"] = self._up2.forward(output_dict["up1"]) | |
output_dict["up3"] = self._up3.forward(output_dict["up2"]) | |
output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"]) | |
output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"]) | |
return output_dict | |
class DecoderUnet(nn.Layer): | |
def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer, | |
act, act_attr, conv_block_dropout, conv_block_num, | |
conv_block_dilation, out_conv_act, out_conv_act_attr): | |
super(DecoderUnet, self).__init__() | |
conv_blocks = [] | |
for i in range(conv_block_num): | |
conv_blocks.append( | |
ResBlock( | |
name="{}_conv_block_{}".format(name, i), | |
channels=encode_dim * 8, | |
norm_layer=norm_layer, | |
use_dropout=conv_block_dropout, | |
use_dilation=conv_block_dilation, | |
use_bias=use_bias)) | |
self._conv_blocks = nn.Sequential(*conv_blocks) | |
self._up1 = SNConvTranspose( | |
name=name + "_up1", | |
in_channels=encode_dim * 8, | |
out_channels=encode_dim * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up2 = SNConvTranspose( | |
name=name + "_up2", | |
in_channels=encode_dim * 8, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up3 = SNConvTranspose( | |
name=name + "_up3", | |
in_channels=encode_dim * 4, | |
out_channels=encode_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate") | |
self._out_conv = SNConv( | |
name=name + "_out_conv", | |
in_channels=encode_dim, | |
out_channels=out_channels, | |
kernel_size=3, | |
use_bias=use_bias, | |
norm_layer=None, | |
act=out_conv_act, | |
act_attr=out_conv_act_attr) | |
def forward(self, x, y, feature2, feature1): | |
output_dict = dict() | |
output_dict["conv_blocks"] = self._conv_blocks( | |
paddle.concat( | |
(x, y), axis=1)) | |
output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"]) | |
output_dict["up2"] = self._up2.forward( | |
paddle.concat( | |
(output_dict["up1"], feature2), axis=1)) | |
output_dict["up3"] = self._up3.forward( | |
paddle.concat( | |
(output_dict["up2"], feature1), axis=1)) | |
output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"]) | |
output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"]) | |
return output_dict | |
class SingleDecoder(nn.Layer): | |
def __init__(self, name, encode_dim, out_channels, use_bias, norm_layer, | |
act, act_attr, conv_block_dropout, conv_block_num, | |
conv_block_dilation, out_conv_act, out_conv_act_attr): | |
super(SingleDecoder, self).__init__() | |
conv_blocks = [] | |
for i in range(conv_block_num): | |
conv_blocks.append( | |
ResBlock( | |
name="{}_conv_block_{}".format(name, i), | |
channels=encode_dim * 4, | |
norm_layer=norm_layer, | |
use_dropout=conv_block_dropout, | |
use_dilation=conv_block_dilation, | |
use_bias=use_bias)) | |
self._conv_blocks = nn.Sequential(*conv_blocks) | |
self._up1 = SNConvTranspose( | |
name=name + "_up1", | |
in_channels=encode_dim * 4, | |
out_channels=encode_dim * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up2 = SNConvTranspose( | |
name=name + "_up2", | |
in_channels=encode_dim * 8, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up3 = SNConvTranspose( | |
name=name + "_up3", | |
in_channels=encode_dim * 4, | |
out_channels=encode_dim, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
output_padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._pad2d = paddle.nn.Pad2D([1, 1, 1, 1], mode="replicate") | |
self._out_conv = SNConv( | |
name=name + "_out_conv", | |
in_channels=encode_dim, | |
out_channels=out_channels, | |
kernel_size=3, | |
use_bias=use_bias, | |
norm_layer=None, | |
act=out_conv_act, | |
act_attr=out_conv_act_attr) | |
def forward(self, x, feature2, feature1): | |
output_dict = dict() | |
output_dict["conv_blocks"] = self._conv_blocks.forward(x) | |
output_dict["up1"] = self._up1.forward(output_dict["conv_blocks"]) | |
output_dict["up2"] = self._up2.forward( | |
paddle.concat( | |
(output_dict["up1"], feature2), axis=1)) | |
output_dict["up3"] = self._up3.forward( | |
paddle.concat( | |
(output_dict["up2"], feature1), axis=1)) | |
output_dict["pad2d"] = self._pad2d.forward(output_dict["up3"]) | |
output_dict["out_conv"] = self._out_conv.forward(output_dict["pad2d"]) | |
return output_dict | |