Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
from arch.base_module import SNConv, SNConvTranspose, ResBlock | |
class Encoder(nn.Layer): | |
def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer, | |
act, act_attr, conv_block_dropout, conv_block_num, | |
conv_block_dilation): | |
super(Encoder, self).__init__() | |
self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate") | |
self._in_conv = SNConv( | |
name=name + "_in_conv", | |
in_channels=in_channels, | |
out_channels=encode_dim, | |
kernel_size=7, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down1 = SNConv( | |
name=name + "_down1", | |
in_channels=encode_dim, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down2 = SNConv( | |
name=name + "_down2", | |
in_channels=encode_dim * 2, | |
out_channels=encode_dim * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down3 = SNConv( | |
name=name + "_down3", | |
in_channels=encode_dim * 4, | |
out_channels=encode_dim * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
conv_blocks = [] | |
for i in range(conv_block_num): | |
conv_blocks.append( | |
ResBlock( | |
name="{}_conv_block_{}".format(name, i), | |
channels=encode_dim * 4, | |
norm_layer=norm_layer, | |
use_dropout=conv_block_dropout, | |
use_dilation=conv_block_dilation, | |
use_bias=use_bias)) | |
self._conv_blocks = nn.Sequential(*conv_blocks) | |
def forward(self, x): | |
out_dict = dict() | |
x = self._pad2d(x) | |
out_dict["in_conv"] = self._in_conv.forward(x) | |
out_dict["down1"] = self._down1.forward(out_dict["in_conv"]) | |
out_dict["down2"] = self._down2.forward(out_dict["down1"]) | |
out_dict["down3"] = self._down3.forward(out_dict["down2"]) | |
out_dict["res_blocks"] = self._conv_blocks.forward(out_dict["down3"]) | |
return out_dict | |
class EncoderUnet(nn.Layer): | |
def __init__(self, name, in_channels, encode_dim, use_bias, norm_layer, | |
act, act_attr): | |
super(EncoderUnet, self).__init__() | |
self._pad2d = paddle.nn.Pad2D([3, 3, 3, 3], mode="replicate") | |
self._in_conv = SNConv( | |
name=name + "_in_conv", | |
in_channels=in_channels, | |
out_channels=encode_dim, | |
kernel_size=7, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down1 = SNConv( | |
name=name + "_down1", | |
in_channels=encode_dim, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down2 = SNConv( | |
name=name + "_down2", | |
in_channels=encode_dim * 2, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down3 = SNConv( | |
name=name + "_down3", | |
in_channels=encode_dim * 2, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._down4 = SNConv( | |
name=name + "_down4", | |
in_channels=encode_dim * 2, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up1 = SNConvTranspose( | |
name=name + "_up1", | |
in_channels=encode_dim * 2, | |
out_channels=encode_dim * 2, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
self._up2 = SNConvTranspose( | |
name=name + "_up2", | |
in_channels=encode_dim * 4, | |
out_channels=encode_dim * 4, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
use_bias=use_bias, | |
norm_layer=norm_layer, | |
act=act, | |
act_attr=act_attr) | |
def forward(self, x): | |
output_dict = dict() | |
x = self._pad2d(x) | |
output_dict['in_conv'] = self._in_conv.forward(x) | |
output_dict['down1'] = self._down1.forward(output_dict['in_conv']) | |
output_dict['down2'] = self._down2.forward(output_dict['down1']) | |
output_dict['down3'] = self._down3.forward(output_dict['down2']) | |
output_dict['down4'] = self._down4.forward(output_dict['down3']) | |
output_dict['up1'] = self._up1.forward(output_dict['down4']) | |
output_dict['up2'] = self._up2.forward( | |
paddle.concat( | |
(output_dict['down3'], output_dict['up1']), axis=1)) | |
output_dict['concat'] = paddle.concat( | |
(output_dict['down2'], output_dict['up2']), axis=1) | |
return output_dict | |