Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
def normal_(x, mean=0., std=1.): | |
temp_value = paddle.normal(mean, std, shape=x.shape) | |
x.set_value(temp_value) | |
return x | |
class SpectralNorm(object): | |
def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12): | |
self.name = name | |
self.dim = dim | |
if n_power_iterations <= 0: | |
raise ValueError('Expected n_power_iterations to be positive, but ' | |
'got n_power_iterations={}'.format( | |
n_power_iterations)) | |
self.n_power_iterations = n_power_iterations | |
self.eps = eps | |
def reshape_weight_to_matrix(self, weight): | |
weight_mat = weight | |
if self.dim != 0: | |
# transpose dim to front | |
weight_mat = weight_mat.transpose([ | |
self.dim, | |
* [d for d in range(weight_mat.dim()) if d != self.dim] | |
]) | |
height = weight_mat.shape[0] | |
return weight_mat.reshape([height, -1]) | |
def compute_weight(self, module, do_power_iteration): | |
weight = getattr(module, self.name + '_orig') | |
u = getattr(module, self.name + '_u') | |
v = getattr(module, self.name + '_v') | |
weight_mat = self.reshape_weight_to_matrix(weight) | |
if do_power_iteration: | |
with paddle.no_grad(): | |
for _ in range(self.n_power_iterations): | |
v.set_value( | |
F.normalize( | |
paddle.matmul( | |
weight_mat, | |
u, | |
transpose_x=True, | |
transpose_y=False), | |
axis=0, | |
epsilon=self.eps, )) | |
u.set_value( | |
F.normalize( | |
paddle.matmul(weight_mat, v), | |
axis=0, | |
epsilon=self.eps, )) | |
if self.n_power_iterations > 0: | |
u = u.clone() | |
v = v.clone() | |
sigma = paddle.dot(u, paddle.mv(weight_mat, v)) | |
weight = weight / sigma | |
return weight | |
def remove(self, module): | |
with paddle.no_grad(): | |
weight = self.compute_weight(module, do_power_iteration=False) | |
delattr(module, self.name) | |
delattr(module, self.name + '_u') | |
delattr(module, self.name + '_v') | |
delattr(module, self.name + '_orig') | |
module.add_parameter(self.name, weight.detach()) | |
def __call__(self, module, inputs): | |
setattr( | |
module, | |
self.name, | |
self.compute_weight( | |
module, do_power_iteration=module.training)) | |
def apply(module, name, n_power_iterations, dim, eps): | |
for k, hook in module._forward_pre_hooks.items(): | |
if isinstance(hook, SpectralNorm) and hook.name == name: | |
raise RuntimeError( | |
"Cannot register two spectral_norm hooks on " | |
"the same parameter {}".format(name)) | |
fn = SpectralNorm(name, n_power_iterations, dim, eps) | |
weight = module._parameters[name] | |
with paddle.no_grad(): | |
weight_mat = fn.reshape_weight_to_matrix(weight) | |
h, w = weight_mat.shape | |
# randomly initialize u and v | |
u = module.create_parameter([h]) | |
u = normal_(u, 0., 1.) | |
v = module.create_parameter([w]) | |
v = normal_(v, 0., 1.) | |
u = F.normalize(u, axis=0, epsilon=fn.eps) | |
v = F.normalize(v, axis=0, epsilon=fn.eps) | |
# delete fn.name form parameters, otherwise you can not set attribute | |
del module._parameters[fn.name] | |
module.add_parameter(fn.name + "_orig", weight) | |
# still need to assign weight back as fn.name because all sorts of | |
# things may assume that it exists, e.g., when initializing weights. | |
# However, we can't directly assign as it could be an Parameter and | |
# gets added as a parameter. Instead, we register weight * 1.0 as a plain | |
# attribute. | |
setattr(module, fn.name, weight * 1.0) | |
module.register_buffer(fn.name + "_u", u) | |
module.register_buffer(fn.name + "_v", v) | |
module.register_forward_pre_hook(fn) | |
return fn | |
def spectral_norm(module, | |
name='weight', | |
n_power_iterations=1, | |
eps=1e-12, | |
dim=None): | |
if dim is None: | |
if isinstance(module, (nn.Conv1DTranspose, nn.Conv2DTranspose, | |
nn.Conv3DTranspose, nn.Linear)): | |
dim = 1 | |
else: | |
dim = 0 | |
SpectralNorm.apply(module, name, n_power_iterations, dim, eps) | |
return module | |