Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import cv2 | |
import math | |
import paddle | |
from arch import style_text_rec | |
from utils.sys_funcs import check_gpu | |
from utils.logging import get_logger | |
class StyleTextRecPredictor(object): | |
def __init__(self, config): | |
algorithm = config['Predictor']['algorithm'] | |
assert algorithm in ["StyleTextRec" | |
], "Generator {} not supported.".format(algorithm) | |
use_gpu = config["Global"]['use_gpu'] | |
check_gpu(use_gpu) | |
paddle.set_device('gpu' if use_gpu else 'cpu') | |
self.logger = get_logger() | |
self.generator = getattr(style_text_rec, algorithm)(config) | |
self.height = config["Global"]["image_height"] | |
self.width = config["Global"]["image_width"] | |
self.scale = config["Predictor"]["scale"] | |
self.mean = config["Predictor"]["mean"] | |
self.std = config["Predictor"]["std"] | |
self.expand_result = config["Predictor"]["expand_result"] | |
def reshape_to_same_height(self, img_list): | |
h = img_list[0].shape[0] | |
for idx in range(1, len(img_list)): | |
new_w = round(1.0 * img_list[idx].shape[1] / | |
img_list[idx].shape[0] * h) | |
img_list[idx] = cv2.resize(img_list[idx], (new_w, h)) | |
return img_list | |
def predict_single_image(self, style_input, text_input): | |
style_input = self.rep_style_input(style_input, text_input) | |
tensor_style_input = self.preprocess(style_input) | |
tensor_text_input = self.preprocess(text_input) | |
style_text_result = self.generator.forward(tensor_style_input, | |
tensor_text_input) | |
fake_fusion = self.postprocess(style_text_result["fake_fusion"]) | |
fake_text = self.postprocess(style_text_result["fake_text"]) | |
fake_sk = self.postprocess(style_text_result["fake_sk"]) | |
fake_bg = self.postprocess(style_text_result["fake_bg"]) | |
bbox = self.get_text_boundary(fake_text) | |
if bbox: | |
left, right, top, bottom = bbox | |
fake_fusion = fake_fusion[top:bottom, left:right, :] | |
fake_text = fake_text[top:bottom, left:right, :] | |
fake_sk = fake_sk[top:bottom, left:right, :] | |
fake_bg = fake_bg[top:bottom, left:right, :] | |
# fake_fusion = self.crop_by_text(img_fake_fusion, img_fake_text) | |
return { | |
"fake_fusion": fake_fusion, | |
"fake_text": fake_text, | |
"fake_sk": fake_sk, | |
"fake_bg": fake_bg, | |
} | |
def predict(self, style_input, text_input_list): | |
if not isinstance(text_input_list, (tuple, list)): | |
return self.predict_single_image(style_input, text_input_list) | |
synth_result_list = [] | |
for text_input in text_input_list: | |
synth_result = self.predict_single_image(style_input, text_input) | |
synth_result_list.append(synth_result) | |
for key in synth_result: | |
res = [r[key] for r in synth_result_list] | |
res = self.reshape_to_same_height(res) | |
synth_result[key] = np.concatenate(res, axis=1) | |
return synth_result | |
def preprocess(self, img): | |
img = (img.astype('float32') * self.scale - self.mean) / self.std | |
img_height, img_width, channel = img.shape | |
assert channel == 3, "Please use an rgb image." | |
ratio = img_width / float(img_height) | |
if math.ceil(self.height * ratio) > self.width: | |
resized_w = self.width | |
else: | |
resized_w = int(math.ceil(self.height * ratio)) | |
img = cv2.resize(img, (resized_w, self.height)) | |
new_img = np.zeros([self.height, self.width, 3]).astype('float32') | |
new_img[:, 0:resized_w, :] = img | |
img = new_img.transpose((2, 0, 1)) | |
img = img[np.newaxis, :, :, :] | |
return paddle.to_tensor(img) | |
def postprocess(self, tensor): | |
img = tensor.numpy()[0] | |
img = img.transpose((1, 2, 0)) | |
img = (img * self.std + self.mean) / self.scale | |
img = np.maximum(img, 0.0) | |
img = np.minimum(img, 255.0) | |
img = img.astype('uint8') | |
return img | |
def rep_style_input(self, style_input, text_input): | |
rep_num = int(1.2 * (text_input.shape[1] / text_input.shape[0]) / | |
(style_input.shape[1] / style_input.shape[0])) + 1 | |
style_input = np.tile(style_input, reps=[1, rep_num, 1]) | |
max_width = int(self.width / self.height * style_input.shape[0]) | |
style_input = style_input[:, :max_width, :] | |
return style_input | |
def get_text_boundary(self, text_img): | |
img_height = text_img.shape[0] | |
img_width = text_img.shape[1] | |
bounder = 3 | |
text_canny_img = cv2.Canny(text_img, 10, 20) | |
edge_num_h = text_canny_img.sum(axis=0) | |
no_zero_list_h = np.where(edge_num_h > 0)[0] | |
edge_num_w = text_canny_img.sum(axis=1) | |
no_zero_list_w = np.where(edge_num_w > 0)[0] | |
if len(no_zero_list_h) == 0 or len(no_zero_list_w) == 0: | |
return None | |
left = max(no_zero_list_h[0] - bounder, 0) | |
right = min(no_zero_list_h[-1] + bounder, img_width) | |
top = max(no_zero_list_w[0] - bounder, 0) | |
bottom = min(no_zero_list_w[-1] + bounder, img_height) | |
return [left, right, top, bottom] | |