Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import random | |
import cv2 | |
class DatasetSampler(object): | |
def __init__(self, config): | |
self.image_home = config["StyleSampler"]["image_home"] | |
label_file = config["StyleSampler"]["label_file"] | |
self.dataset_with_label = config["StyleSampler"]["with_label"] | |
self.height = config["Global"]["image_height"] | |
self.index = 0 | |
with open(label_file, "r") as f: | |
label_raw = f.read() | |
self.path_label_list = label_raw.split("\n")[:-1] | |
assert len(self.path_label_list) > 0 | |
random.shuffle(self.path_label_list) | |
def sample(self): | |
if self.index >= len(self.path_label_list): | |
random.shuffle(self.path_label_list) | |
self.index = 0 | |
if self.dataset_with_label: | |
path_label = self.path_label_list[self.index] | |
rel_image_path, label = path_label.split('\t') | |
else: | |
rel_image_path = self.path_label_list[self.index] | |
label = None | |
img_path = "{}/{}".format(self.image_home, rel_image_path) | |
image = cv2.imread(img_path) | |
origin_height = image.shape[0] | |
ratio = self.height / origin_height | |
width = int(image.shape[1] * ratio) | |
height = int(image.shape[0] * ratio) | |
image = cv2.resize(image, (width, height)) | |
self.index += 1 | |
if label: | |
return {"image": image, "label": label} | |
else: | |
return {"image": image} | |
def duplicate_image(image, width): | |
image_width = image.shape[1] | |
dup_num = width // image_width + 1 | |
image = np.tile(image, reps=[1, dup_num, 1]) | |
cropped_image = image[:, :width, :] | |
return cropped_image | |