Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import numpy as np | |
import cv2 | |
from utils.config import ArgsParser, load_config, override_config | |
from utils.logging import get_logger | |
from engine import style_samplers, corpus_generators, text_drawers, predictors, writers | |
class ImageSynthesiser(object): | |
def __init__(self): | |
self.FLAGS = ArgsParser().parse_args() | |
self.config = load_config(self.FLAGS.config) | |
self.config = override_config(self.config, options=self.FLAGS.override) | |
self.output_dir = self.config["Global"]["output_dir"] | |
if not os.path.exists(self.output_dir): | |
os.mkdir(self.output_dir) | |
self.logger = get_logger( | |
log_file='{}/predict.log'.format(self.output_dir)) | |
self.text_drawer = text_drawers.StdTextDrawer(self.config) | |
predictor_method = self.config["Predictor"]["method"] | |
assert predictor_method is not None | |
self.predictor = getattr(predictors, predictor_method)(self.config) | |
def synth_image(self, corpus, style_input, language="en"): | |
corpus_list, text_input_list = self.text_drawer.draw_text( | |
corpus, language, style_input_width=style_input.shape[1]) | |
synth_result = self.predictor.predict(style_input, text_input_list) | |
return synth_result | |
class DatasetSynthesiser(ImageSynthesiser): | |
def __init__(self): | |
super(DatasetSynthesiser, self).__init__() | |
self.tag = self.FLAGS.tag | |
self.output_num = self.config["Global"]["output_num"] | |
corpus_generator_method = self.config["CorpusGenerator"]["method"] | |
self.corpus_generator = getattr(corpus_generators, | |
corpus_generator_method)(self.config) | |
style_sampler_method = self.config["StyleSampler"]["method"] | |
assert style_sampler_method is not None | |
self.style_sampler = style_samplers.DatasetSampler(self.config) | |
self.writer = writers.SimpleWriter(self.config, self.tag) | |
def synth_dataset(self): | |
for i in range(self.output_num): | |
style_data = self.style_sampler.sample() | |
style_input = style_data["image"] | |
corpus_language, text_input_label = self.corpus_generator.generate() | |
text_input_label_list, text_input_list = self.text_drawer.draw_text( | |
text_input_label, | |
corpus_language, | |
style_input_width=style_input.shape[1]) | |
text_input_label = "".join(text_input_label_list) | |
synth_result = self.predictor.predict(style_input, text_input_list) | |
fake_fusion = synth_result["fake_fusion"] | |
self.writer.save_image(fake_fusion, text_input_label) | |
self.writer.save_label() | |
self.writer.merge_label() | |