Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from paddle import nn | |
from ppocr.modeling.transforms import build_transform | |
from ppocr.modeling.backbones import build_backbone | |
from ppocr.modeling.necks import build_neck | |
from ppocr.modeling.heads import build_head | |
from .base_model import BaseModel | |
from ppocr.utils.save_load import load_pretrained_params | |
__all__ = ['DistillationModel'] | |
class DistillationModel(nn.Layer): | |
def __init__(self, config): | |
""" | |
the module for OCR distillation. | |
args: | |
config (dict): the super parameters for module. | |
""" | |
super().__init__() | |
self.model_list = [] | |
self.model_name_list = [] | |
for key in config["Models"]: | |
model_config = config["Models"][key] | |
freeze_params = False | |
pretrained = None | |
if "freeze_params" in model_config: | |
freeze_params = model_config.pop("freeze_params") | |
if "pretrained" in model_config: | |
pretrained = model_config.pop("pretrained") | |
model = BaseModel(model_config) | |
if pretrained is not None: | |
load_pretrained_params(model, pretrained) | |
if freeze_params: | |
for param in model.parameters(): | |
param.trainable = False | |
self.model_list.append(self.add_sublayer(key, model)) | |
self.model_name_list.append(key) | |
def forward(self, x, data=None): | |
result_dict = dict() | |
for idx, model_name in enumerate(self.model_name_list): | |
result_dict[model_name] = self.model_list[idx](x, data) | |
return result_dict | |