Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py | |
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import ParamAttr | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
import numpy as np | |
__all__ = ["ResNet31"] | |
def conv3x3(in_channel, out_channel, stride=1, conv_weight_attr=None): | |
return nn.Conv2D( | |
in_channel, | |
out_channel, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
weight_attr=conv_weight_attr, | |
bias_attr=False) | |
class BasicBlock(nn.Layer): | |
expansion = 1 | |
def __init__(self, in_channels, channels, stride=1, downsample=False, conv_weight_attr=None, bn_weight_attr=None): | |
super().__init__() | |
self.conv1 = conv3x3(in_channels, channels, stride, | |
conv_weight_attr=conv_weight_attr) | |
self.bn1 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr) | |
self.relu = nn.ReLU() | |
self.conv2 = conv3x3(channels, channels, | |
conv_weight_attr=conv_weight_attr) | |
self.bn2 = nn.BatchNorm2D(channels, weight_attr=bn_weight_attr) | |
self.downsample = downsample | |
if downsample: | |
self.downsample = nn.Sequential( | |
nn.Conv2D( | |
in_channels, | |
channels * self.expansion, | |
1, | |
stride, | |
weight_attr=conv_weight_attr, | |
bias_attr=False), | |
nn.BatchNorm2D(channels * self.expansion, weight_attr=bn_weight_attr)) | |
else: | |
self.downsample = nn.Sequential() | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet31(nn.Layer): | |
''' | |
Args: | |
in_channels (int): Number of channels of input image tensor. | |
layers (list[int]): List of BasicBlock number for each stage. | |
channels (list[int]): List of out_channels of Conv2d layer. | |
out_indices (None | Sequence[int]): Indices of output stages. | |
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage. | |
init_type (None | str): the config to control the initialization. | |
''' | |
def __init__(self, | |
in_channels=3, | |
layers=[1, 2, 5, 3], | |
channels=[64, 128, 256, 256, 512, 512, 512], | |
out_indices=None, | |
last_stage_pool=False, | |
init_type=None): | |
super(ResNet31, self).__init__() | |
assert isinstance(in_channels, int) | |
assert isinstance(last_stage_pool, bool) | |
self.out_indices = out_indices | |
self.last_stage_pool = last_stage_pool | |
conv_weight_attr = None | |
bn_weight_attr = None | |
if init_type is not None: | |
support_dict = ['KaimingNormal'] | |
assert init_type in support_dict, Exception( | |
"resnet31 only support {}".format(support_dict)) | |
conv_weight_attr = nn.initializer.KaimingNormal() | |
bn_weight_attr = ParamAttr(initializer=nn.initializer.Uniform(), learning_rate=1) | |
# conv 1 (Conv Conv) | |
self.conv1_1 = nn.Conv2D( | |
in_channels, channels[0], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) | |
self.bn1_1 = nn.BatchNorm2D(channels[0], weight_attr=bn_weight_attr) | |
self.relu1_1 = nn.ReLU() | |
self.conv1_2 = nn.Conv2D( | |
channels[0], channels[1], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) | |
self.bn1_2 = nn.BatchNorm2D(channels[1], weight_attr=bn_weight_attr) | |
self.relu1_2 = nn.ReLU() | |
# conv 2 (Max-pooling, Residual block, Conv) | |
self.pool2 = nn.MaxPool2D( | |
kernel_size=2, stride=2, padding=0, ceil_mode=True) | |
self.block2 = self._make_layer(channels[1], channels[2], layers[0], | |
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) | |
self.conv2 = nn.Conv2D( | |
channels[2], channels[2], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) | |
self.bn2 = nn.BatchNorm2D(channels[2], weight_attr=bn_weight_attr) | |
self.relu2 = nn.ReLU() | |
# conv 3 (Max-pooling, Residual block, Conv) | |
self.pool3 = nn.MaxPool2D( | |
kernel_size=2, stride=2, padding=0, ceil_mode=True) | |
self.block3 = self._make_layer(channels[2], channels[3], layers[1], | |
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) | |
self.conv3 = nn.Conv2D( | |
channels[3], channels[3], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) | |
self.bn3 = nn.BatchNorm2D(channels[3], weight_attr=bn_weight_attr) | |
self.relu3 = nn.ReLU() | |
# conv 4 (Max-pooling, Residual block, Conv) | |
self.pool4 = nn.MaxPool2D( | |
kernel_size=(2, 1), stride=(2, 1), padding=0, ceil_mode=True) | |
self.block4 = self._make_layer(channels[3], channels[4], layers[2], | |
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) | |
self.conv4 = nn.Conv2D( | |
channels[4], channels[4], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) | |
self.bn4 = nn.BatchNorm2D(channels[4], weight_attr=bn_weight_attr) | |
self.relu4 = nn.ReLU() | |
# conv 5 ((Max-pooling), Residual block, Conv) | |
self.pool5 = None | |
if self.last_stage_pool: | |
self.pool5 = nn.MaxPool2D( | |
kernel_size=2, stride=2, padding=0, ceil_mode=True) | |
self.block5 = self._make_layer(channels[4], channels[5], layers[3], | |
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr) | |
self.conv5 = nn.Conv2D( | |
channels[5], channels[5], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr) | |
self.bn5 = nn.BatchNorm2D(channels[5], weight_attr=bn_weight_attr) | |
self.relu5 = nn.ReLU() | |
self.out_channels = channels[-1] | |
def _make_layer(self, input_channels, output_channels, blocks, conv_weight_attr=None, bn_weight_attr=None): | |
layers = [] | |
for _ in range(blocks): | |
downsample = None | |
if input_channels != output_channels: | |
downsample = nn.Sequential( | |
nn.Conv2D( | |
input_channels, | |
output_channels, | |
kernel_size=1, | |
stride=1, | |
weight_attr=conv_weight_attr, | |
bias_attr=False), | |
nn.BatchNorm2D(output_channels, weight_attr=bn_weight_attr)) | |
layers.append( | |
BasicBlock( | |
input_channels, output_channels, downsample=downsample, | |
conv_weight_attr=conv_weight_attr, bn_weight_attr=bn_weight_attr)) | |
input_channels = output_channels | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1_1(x) | |
x = self.bn1_1(x) | |
x = self.relu1_1(x) | |
x = self.conv1_2(x) | |
x = self.bn1_2(x) | |
x = self.relu1_2(x) | |
outs = [] | |
for i in range(4): | |
layer_index = i + 2 | |
pool_layer = getattr(self, f'pool{layer_index}') | |
block_layer = getattr(self, f'block{layer_index}') | |
conv_layer = getattr(self, f'conv{layer_index}') | |
bn_layer = getattr(self, f'bn{layer_index}') | |
relu_layer = getattr(self, f'relu{layer_index}') | |
if pool_layer is not None: | |
x = pool_layer(x) | |
x = block_layer(x) | |
x = conv_layer(x) | |
x = bn_layer(x) | |
x = relu_layer(x) | |
outs.append(x) | |
if self.out_indices is not None: | |
return tuple([outs[i] for i in self.out_indices]) | |
return x | |