Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refered from: | |
https://github.com/shengtao96/CentripetalText/blob/main/test.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import os.path as osp | |
import numpy as np | |
import cv2 | |
import paddle | |
import pyclipper | |
class CTPostProcess(object): | |
""" | |
The post process for Centripetal Text (CT). | |
""" | |
def __init__(self, min_score=0.88, min_area=16, box_type='poly', **kwargs): | |
self.min_score = min_score | |
self.min_area = min_area | |
self.box_type = box_type | |
self.coord = np.zeros((2, 300, 300), dtype=np.int32) | |
for i in range(300): | |
for j in range(300): | |
self.coord[0, i, j] = j | |
self.coord[1, i, j] = i | |
def __call__(self, preds, batch): | |
outs = preds['maps'] | |
out_scores = preds['score'] | |
if isinstance(outs, paddle.Tensor): | |
outs = outs.numpy() | |
if isinstance(out_scores, paddle.Tensor): | |
out_scores = out_scores.numpy() | |
batch_size = outs.shape[0] | |
boxes_batch = [] | |
for idx in range(batch_size): | |
bboxes = [] | |
scores = [] | |
img_shape = batch[idx] | |
org_img_size = img_shape[:3] | |
img_shape = img_shape[3:] | |
img_size = img_shape[:2] | |
out = np.expand_dims(outs[idx], axis=0) | |
outputs = dict() | |
score = np.expand_dims(out_scores[idx], axis=0) | |
kernel = out[:, 0, :, :] > 0.2 | |
loc = out[:, 1:, :, :].astype("float32") | |
score = score[0].astype(np.float32) | |
kernel = kernel[0].astype(np.uint8) | |
loc = loc[0].astype(np.float32) | |
label_num, label_kernel = cv2.connectedComponents( | |
kernel, connectivity=4) | |
for i in range(1, label_num): | |
ind = (label_kernel == i) | |
if ind.sum( | |
) < 10: # pixel number less than 10, treated as background | |
label_kernel[ind] = 0 | |
label = np.zeros_like(label_kernel) | |
h, w = label_kernel.shape | |
pixels = self.coord[:, :h, :w].reshape(2, -1) | |
points = pixels.transpose([1, 0]).astype(np.float32) | |
off_points = (points + 10. / 4. * loc[:, pixels[1], pixels[0]].T | |
).astype(np.int32) | |
off_points[:, 0] = np.clip(off_points[:, 0], 0, label.shape[1] - 1) | |
off_points[:, 1] = np.clip(off_points[:, 1], 0, label.shape[0] - 1) | |
label[pixels[1], pixels[0]] = label_kernel[off_points[:, 1], | |
off_points[:, 0]] | |
label[label_kernel > 0] = label_kernel[label_kernel > 0] | |
score_pocket = [0.0] | |
for i in range(1, label_num): | |
ind = (label_kernel == i) | |
if ind.sum() == 0: | |
score_pocket.append(0.0) | |
continue | |
score_i = np.mean(score[ind]) | |
score_pocket.append(score_i) | |
label_num = np.max(label) + 1 | |
label = cv2.resize( | |
label, (img_size[1], img_size[0]), | |
interpolation=cv2.INTER_NEAREST) | |
scale = (float(org_img_size[1]) / float(img_size[1]), | |
float(org_img_size[0]) / float(img_size[0])) | |
for i in range(1, label_num): | |
ind = (label == i) | |
points = np.array(np.where(ind)).transpose((1, 0)) | |
if points.shape[0] < self.min_area: | |
continue | |
score_i = score_pocket[i] | |
if score_i < self.min_score: | |
continue | |
if self.box_type == 'rect': | |
rect = cv2.minAreaRect(points[:, ::-1]) | |
bbox = cv2.boxPoints(rect) * scale | |
z = bbox.mean(0) | |
bbox = z + (bbox - z) * 0.85 | |
elif self.box_type == 'poly': | |
binary = np.zeros(label.shape, dtype='uint8') | |
binary[ind] = 1 | |
try: | |
_, contours, _ = cv2.findContours( | |
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
except BaseException: | |
contours, _ = cv2.findContours( | |
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
bbox = contours[0] * scale | |
bbox = bbox.astype('int32') | |
bboxes.append(bbox.reshape(-1, 2)) | |
scores.append(score_i) | |
boxes_batch.append({'points': bboxes}) | |
return boxes_batch | |