Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
import subprocess | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import json | |
import numpy as np | |
import time | |
import logging | |
from copy import deepcopy | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.visual import draw_ser_results, draw_re_results | |
from tools.infer.predict_system import TextSystem | |
from ppstructure.layout.predict_layout import LayoutPredictor | |
from ppstructure.table.predict_table import TableSystem, to_excel | |
from ppstructure.utility import parse_args, draw_structure_result | |
logger = get_logger() | |
class StructureSystem(object): | |
def __init__(self, args): | |
self.mode = args.mode | |
self.recovery = args.recovery | |
self.image_orientation_predictor = None | |
if args.image_orientation: | |
import paddleclas | |
self.image_orientation_predictor = paddleclas.PaddleClas( | |
model_name="text_image_orientation") | |
if self.mode == 'structure': | |
if not args.show_log: | |
logger.setLevel(logging.INFO) | |
if args.layout == False and args.ocr == True: | |
args.ocr = False | |
logger.warning( | |
"When args.layout is false, args.ocr is automatically set to false" | |
) | |
args.drop_score = 0 | |
# init model | |
self.layout_predictor = None | |
self.text_system = None | |
self.table_system = None | |
if args.layout: | |
self.layout_predictor = LayoutPredictor(args) | |
if args.ocr: | |
self.text_system = TextSystem(args) | |
if args.table: | |
if self.text_system is not None: | |
self.table_system = TableSystem( | |
args, self.text_system.text_detector, | |
self.text_system.text_recognizer) | |
else: | |
self.table_system = TableSystem(args) | |
elif self.mode == 'kie': | |
from ppstructure.kie.predict_kie_token_ser_re import SerRePredictor | |
self.kie_predictor = SerRePredictor(args) | |
def __call__(self, img, return_ocr_result_in_table=False, img_idx=0): | |
time_dict = { | |
'image_orientation': 0, | |
'layout': 0, | |
'table': 0, | |
'table_match': 0, | |
'det': 0, | |
'rec': 0, | |
'kie': 0, | |
'all': 0 | |
} | |
start = time.time() | |
if self.image_orientation_predictor is not None: | |
tic = time.time() | |
cls_result = self.image_orientation_predictor.predict( | |
input_data=img) | |
cls_res = next(cls_result) | |
angle = cls_res[0]['label_names'][0] | |
cv_rotate_code = { | |
'90': cv2.ROTATE_90_COUNTERCLOCKWISE, | |
'180': cv2.ROTATE_180, | |
'270': cv2.ROTATE_90_CLOCKWISE | |
} | |
if angle in cv_rotate_code: | |
img = cv2.rotate(img, cv_rotate_code[angle]) | |
toc = time.time() | |
time_dict['image_orientation'] = toc - tic | |
if self.mode == 'structure': | |
ori_im = img.copy() | |
if self.layout_predictor is not None: | |
layout_res, elapse = self.layout_predictor(img) | |
time_dict['layout'] += elapse | |
else: | |
h, w = ori_im.shape[:2] | |
layout_res = [dict(bbox=None, label='table')] | |
res_list = [] | |
for region in layout_res: | |
res = '' | |
if region['bbox'] is not None: | |
x1, y1, x2, y2 = region['bbox'] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
roi_img = ori_im[y1:y2, x1:x2, :] | |
else: | |
x1, y1, x2, y2 = 0, 0, w, h | |
roi_img = ori_im | |
if region['label'] == 'table': | |
if self.table_system is not None: | |
res, table_time_dict = self.table_system( | |
roi_img, return_ocr_result_in_table) | |
time_dict['table'] += table_time_dict['table'] | |
time_dict['table_match'] += table_time_dict['match'] | |
time_dict['det'] += table_time_dict['det'] | |
time_dict['rec'] += table_time_dict['rec'] | |
else: | |
if self.text_system is not None: | |
if self.recovery: | |
wht_im = np.ones(ori_im.shape, dtype=ori_im.dtype) | |
wht_im[y1:y2, x1:x2, :] = roi_img | |
filter_boxes, filter_rec_res, ocr_time_dict = self.text_system( | |
wht_im) | |
else: | |
filter_boxes, filter_rec_res, ocr_time_dict = self.text_system( | |
roi_img) | |
time_dict['det'] += ocr_time_dict['det'] | |
time_dict['rec'] += ocr_time_dict['rec'] | |
# remove style char, | |
# when using the recognition model trained on the PubtabNet dataset, | |
# it will recognize the text format in the table, such as <b> | |
style_token = [ | |
'<strike>', '<strike>', '<sup>', '</sub>', '<b>', | |
'</b>', '<sub>', '</sup>', '<overline>', | |
'</overline>', '<underline>', '</underline>', '<i>', | |
'</i>' | |
] | |
res = [] | |
for box, rec_res in zip(filter_boxes, filter_rec_res): | |
rec_str, rec_conf = rec_res | |
for token in style_token: | |
if token in rec_str: | |
rec_str = rec_str.replace(token, '') | |
if not self.recovery: | |
box += [x1, y1] | |
res.append({ | |
'text': rec_str, | |
'confidence': float(rec_conf), | |
'text_region': box.tolist() | |
}) | |
res_list.append({ | |
'type': region['label'].lower(), | |
'bbox': [x1, y1, x2, y2], | |
'img': roi_img, | |
'res': res, | |
'img_idx': img_idx | |
}) | |
end = time.time() | |
time_dict['all'] = end - start | |
return res_list, time_dict | |
elif self.mode == 'kie': | |
re_res, elapse = self.kie_predictor(img) | |
time_dict['kie'] = elapse | |
time_dict['all'] = elapse | |
return re_res[0], time_dict | |
return None, None | |
def save_structure_res(res, save_folder, img_name, img_idx=0): | |
excel_save_folder = os.path.join(save_folder, img_name) | |
os.makedirs(excel_save_folder, exist_ok=True) | |
res_cp = deepcopy(res) | |
# save res | |
with open( | |
os.path.join(excel_save_folder, 'res_{}.txt'.format(img_idx)), | |
'w', | |
encoding='utf8') as f: | |
for region in res_cp: | |
roi_img = region.pop('img') | |
f.write('{}\n'.format(json.dumps(region))) | |
if region['type'].lower() == 'table' and len(region[ | |
'res']) > 0 and 'html' in region['res']: | |
excel_path = os.path.join( | |
excel_save_folder, | |
'{}_{}.xlsx'.format(region['bbox'], img_idx)) | |
to_excel(region['res']['html'], excel_path) | |
elif region['type'].lower() == 'figure': | |
img_path = os.path.join( | |
excel_save_folder, | |
'{}_{}.jpg'.format(region['bbox'], img_idx)) | |
cv2.imwrite(img_path, roi_img) | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
image_file_list = image_file_list | |
image_file_list = image_file_list[args.process_id::args.total_process_num] | |
if not args.use_pdf2docx_api: | |
structure_sys = StructureSystem(args) | |
save_folder = os.path.join(args.output, structure_sys.mode) | |
os.makedirs(save_folder, exist_ok=True) | |
img_num = len(image_file_list) | |
for i, image_file in enumerate(image_file_list): | |
logger.info("[{}/{}] {}".format(i, img_num, image_file)) | |
img, flag_gif, flag_pdf = check_and_read(image_file) | |
img_name = os.path.basename(image_file).split('.')[0] | |
if args.recovery and args.use_pdf2docx_api and flag_pdf: | |
from pdf2docx.converter import Converter | |
os.makedirs(args.output, exist_ok=True) | |
docx_file = os.path.join(args.output, | |
'{}_api.docx'.format(img_name)) | |
cv = Converter(image_file) | |
cv.convert(docx_file) | |
cv.close() | |
logger.info('docx save to {}'.format(docx_file)) | |
continue | |
if not flag_gif and not flag_pdf: | |
img = cv2.imread(image_file) | |
if not flag_pdf: | |
if img is None: | |
logger.error("error in loading image:{}".format(image_file)) | |
continue | |
imgs = [img] | |
else: | |
imgs = img | |
all_res = [] | |
for index, img in enumerate(imgs): | |
res, time_dict = structure_sys(img, img_idx=index) | |
img_save_path = os.path.join(save_folder, img_name, | |
'show_{}.jpg'.format(index)) | |
os.makedirs(os.path.join(save_folder, img_name), exist_ok=True) | |
if structure_sys.mode == 'structure' and res != []: | |
draw_img = draw_structure_result(img, res, args.vis_font_path) | |
save_structure_res(res, save_folder, img_name, index) | |
elif structure_sys.mode == 'kie': | |
if structure_sys.kie_predictor.predictor is not None: | |
draw_img = draw_re_results( | |
img, res, font_path=args.vis_font_path) | |
else: | |
draw_img = draw_ser_results( | |
img, res, font_path=args.vis_font_path) | |
with open( | |
os.path.join(save_folder, img_name, | |
'res_{}_kie.txt'.format(index)), | |
'w', | |
encoding='utf8') as f: | |
res_str = '{}\t{}\n'.format( | |
image_file, | |
json.dumps( | |
{ | |
"ocr_info": res | |
}, ensure_ascii=False)) | |
f.write(res_str) | |
if res != []: | |
cv2.imwrite(img_save_path, draw_img) | |
logger.info('result save to {}'.format(img_save_path)) | |
if args.recovery and res != []: | |
from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx | |
h, w, _ = img.shape | |
res = sorted_layout_boxes(res, w) | |
all_res += res | |
if args.recovery and all_res != []: | |
try: | |
convert_info_docx(img, all_res, save_folder, img_name) | |
except Exception as ex: | |
logger.error("error in layout recovery image:{}, err msg: {}". | |
format(image_file, ex)) | |
continue | |
logger.info("Predict time : {:.3f}s".format(time_dict['all'])) | |
if __name__ == "__main__": | |
args = parse_args() | |
if args.use_mp: | |
p_list = [] | |
total_process_num = args.total_process_num | |
for process_id in range(total_process_num): | |
cmd = [sys.executable, "-u"] + sys.argv + [ | |
"--process_id={}".format(process_id), | |
"--use_mp={}".format(False) | |
] | |
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) | |
p_list.append(p) | |
for p in p_list: | |
p.wait() | |
else: | |
main(args) | |