Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import numpy as np | |
import time | |
import json | |
import tools.infer.utility as utility | |
from ppocr.data import create_operators, transform | |
from ppocr.postprocess import build_post_process | |
from ppocr.utils.logging import get_logger | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
from ppocr.utils.visual import draw_rectangle | |
from ppstructure.utility import parse_args | |
logger = get_logger() | |
def build_pre_process_list(args): | |
resize_op = {'ResizeTableImage': {'max_len': args.table_max_len, }} | |
pad_op = { | |
'PaddingTableImage': { | |
'size': [args.table_max_len, args.table_max_len] | |
} | |
} | |
normalize_op = { | |
'NormalizeImage': { | |
'std': [0.229, 0.224, 0.225] if | |
args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5], | |
'mean': [0.485, 0.456, 0.406] if | |
args.table_algorithm not in ['TableMaster'] else [0.5, 0.5, 0.5], | |
'scale': '1./255.', | |
'order': 'hwc' | |
} | |
} | |
to_chw_op = {'ToCHWImage': None} | |
keep_keys_op = {'KeepKeys': {'keep_keys': ['image', 'shape']}} | |
if args.table_algorithm not in ['TableMaster']: | |
pre_process_list = [ | |
resize_op, normalize_op, pad_op, to_chw_op, keep_keys_op | |
] | |
else: | |
pre_process_list = [ | |
resize_op, pad_op, normalize_op, to_chw_op, keep_keys_op | |
] | |
return pre_process_list | |
class TableStructurer(object): | |
def __init__(self, args): | |
self.args = args | |
self.use_onnx = args.use_onnx | |
pre_process_list = build_pre_process_list(args) | |
if args.table_algorithm not in ['TableMaster']: | |
postprocess_params = { | |
'name': 'TableLabelDecode', | |
"character_dict_path": args.table_char_dict_path, | |
'merge_no_span_structure': args.merge_no_span_structure | |
} | |
else: | |
postprocess_params = { | |
'name': 'TableMasterLabelDecode', | |
"character_dict_path": args.table_char_dict_path, | |
'box_shape': 'pad', | |
'merge_no_span_structure': args.merge_no_span_structure | |
} | |
self.preprocess_op = create_operators(pre_process_list) | |
self.postprocess_op = build_post_process(postprocess_params) | |
self.predictor, self.input_tensor, self.output_tensors, self.config = \ | |
utility.create_predictor(args, 'table', logger) | |
if args.benchmark: | |
import auto_log | |
pid = os.getpid() | |
gpu_id = utility.get_infer_gpuid() | |
self.autolog = auto_log.AutoLogger( | |
model_name="table", | |
model_precision=args.precision, | |
batch_size=1, | |
data_shape="dynamic", | |
save_path=None, #args.save_log_path, | |
inference_config=self.config, | |
pids=pid, | |
process_name=None, | |
gpu_ids=gpu_id if args.use_gpu else None, | |
time_keys=[ | |
'preprocess_time', 'inference_time', 'postprocess_time' | |
], | |
warmup=0, | |
logger=logger) | |
def __call__(self, img): | |
starttime = time.time() | |
if self.args.benchmark: | |
self.autolog.times.start() | |
ori_im = img.copy() | |
data = {'image': img} | |
data = transform(data, self.preprocess_op) | |
img = data[0] | |
if img is None: | |
return None, 0 | |
img = np.expand_dims(img, axis=0) | |
img = img.copy() | |
if self.args.benchmark: | |
self.autolog.times.stamp() | |
if self.use_onnx: | |
input_dict = {} | |
input_dict[self.input_tensor.name] = img | |
outputs = self.predictor.run(self.output_tensors, input_dict) | |
else: | |
self.input_tensor.copy_from_cpu(img) | |
self.predictor.run() | |
outputs = [] | |
for output_tensor in self.output_tensors: | |
output = output_tensor.copy_to_cpu() | |
outputs.append(output) | |
if self.args.benchmark: | |
self.autolog.times.stamp() | |
preds = {} | |
preds['structure_probs'] = outputs[1] | |
preds['loc_preds'] = outputs[0] | |
shape_list = np.expand_dims(data[-1], axis=0) | |
post_result = self.postprocess_op(preds, [shape_list]) | |
structure_str_list = post_result['structure_batch_list'][0] | |
bbox_list = post_result['bbox_batch_list'][0] | |
structure_str_list = structure_str_list[0] | |
structure_str_list = [ | |
'<html>', '<body>', '<table>' | |
] + structure_str_list + ['</table>', '</body>', '</html>'] | |
elapse = time.time() - starttime | |
if self.args.benchmark: | |
self.autolog.times.end(stamp=True) | |
return (structure_str_list, bbox_list), elapse | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
table_structurer = TableStructurer(args) | |
count = 0 | |
total_time = 0 | |
os.makedirs(args.output, exist_ok=True) | |
with open( | |
os.path.join(args.output, 'infer.txt'), mode='w', | |
encoding='utf-8') as f_w: | |
for image_file in image_file_list: | |
img, flag, _ = check_and_read(image_file) | |
if not flag: | |
img = cv2.imread(image_file) | |
if img is None: | |
logger.info("error in loading image:{}".format(image_file)) | |
continue | |
structure_res, elapse = table_structurer(img) | |
structure_str_list, bbox_list = structure_res | |
bbox_list_str = json.dumps(bbox_list.tolist()) | |
logger.info("result: {}, {}".format(structure_str_list, | |
bbox_list_str)) | |
f_w.write("result: {}, {}\n".format(structure_str_list, | |
bbox_list_str)) | |
if len(bbox_list) > 0 and len(bbox_list[0]) == 4: | |
img = draw_rectangle(image_file, bbox_list) | |
else: | |
img = utility.draw_boxes(img, bbox_list) | |
img_save_path = os.path.join(args.output, | |
os.path.basename(image_file)) | |
cv2.imwrite(img_save_path, img) | |
logger.info("save vis result to {}".format(img_save_path)) | |
if count > 0: | |
total_time += elapse | |
count += 1 | |
logger.info("Predict time of {}: {}".format(image_file, elapse)) | |
if args.benchmark: | |
table_structurer.autolog.report() | |
if __name__ == "__main__": | |
main(parse_args()) | |