Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import sys | |
__dir__ = os.path.dirname(os.path.abspath(__file__)) | |
sys.path.append(__dir__) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..'))) | |
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) | |
os.environ["FLAGS_allocator_strategy"] = 'auto_growth' | |
import cv2 | |
import copy | |
import logging | |
import numpy as np | |
import time | |
import tools.infer.predict_rec as predict_rec | |
import tools.infer.predict_det as predict_det | |
import tools.infer.utility as utility | |
from tools.infer.predict_system import sorted_boxes | |
from ppocr.utils.utility import get_image_file_list, check_and_read | |
from ppocr.utils.logging import get_logger | |
from ppstructure.table.matcher import TableMatch | |
from ppstructure.table.table_master_match import TableMasterMatcher | |
from ppstructure.utility import parse_args | |
import ppstructure.table.predict_structure as predict_strture | |
logger = get_logger() | |
def expand(pix, det_box, shape): | |
x0, y0, x1, y1 = det_box | |
# print(shape) | |
h, w, c = shape | |
tmp_x0 = x0 - pix | |
tmp_x1 = x1 + pix | |
tmp_y0 = y0 - pix | |
tmp_y1 = y1 + pix | |
x0_ = tmp_x0 if tmp_x0 >= 0 else 0 | |
x1_ = tmp_x1 if tmp_x1 <= w else w | |
y0_ = tmp_y0 if tmp_y0 >= 0 else 0 | |
y1_ = tmp_y1 if tmp_y1 <= h else h | |
return x0_, y0_, x1_, y1_ | |
class TableSystem(object): | |
def __init__(self, args, text_detector=None, text_recognizer=None): | |
self.args = args | |
if not args.show_log: | |
logger.setLevel(logging.INFO) | |
benchmark_tmp = False | |
if args.benchmark: | |
benchmark_tmp = args.benchmark | |
args.benchmark = False | |
self.text_detector = predict_det.TextDetector(copy.deepcopy( | |
args)) if text_detector is None else text_detector | |
self.text_recognizer = predict_rec.TextRecognizer(copy.deepcopy( | |
args)) if text_recognizer is None else text_recognizer | |
if benchmark_tmp: | |
args.benchmark = True | |
self.table_structurer = predict_strture.TableStructurer(args) | |
if args.table_algorithm in ['TableMaster']: | |
self.match = TableMasterMatcher() | |
else: | |
self.match = TableMatch(filter_ocr_result=True) | |
self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor( | |
args, 'table', logger) | |
def __call__(self, img, return_ocr_result_in_table=False): | |
result = dict() | |
time_dict = {'det': 0, 'rec': 0, 'table': 0, 'all': 0, 'match': 0} | |
start = time.time() | |
structure_res, elapse = self._structure(copy.deepcopy(img)) | |
result['cell_bbox'] = structure_res[1].tolist() | |
time_dict['table'] = elapse | |
dt_boxes, rec_res, det_elapse, rec_elapse = self._ocr( | |
copy.deepcopy(img)) | |
time_dict['det'] = det_elapse | |
time_dict['rec'] = rec_elapse | |
if return_ocr_result_in_table: | |
result['boxes'] = [x.tolist() for x in dt_boxes] | |
result['rec_res'] = rec_res | |
tic = time.time() | |
pred_html = self.match(structure_res, dt_boxes, rec_res) | |
toc = time.time() | |
time_dict['match'] = toc - tic | |
result['html'] = pred_html | |
end = time.time() | |
time_dict['all'] = end - start | |
return result, time_dict | |
def _structure(self, img): | |
structure_res, elapse = self.table_structurer(copy.deepcopy(img)) | |
return structure_res, elapse | |
def _ocr(self, img): | |
h, w = img.shape[:2] | |
dt_boxes, det_elapse = self.text_detector(copy.deepcopy(img)) | |
dt_boxes = sorted_boxes(dt_boxes) | |
r_boxes = [] | |
for box in dt_boxes: | |
x_min = max(0, box[:, 0].min() - 1) | |
x_max = min(w, box[:, 0].max() + 1) | |
y_min = max(0, box[:, 1].min() - 1) | |
y_max = min(h, box[:, 1].max() + 1) | |
box = [x_min, y_min, x_max, y_max] | |
r_boxes.append(box) | |
dt_boxes = np.array(r_boxes) | |
logger.debug("dt_boxes num : {}, elapse : {}".format( | |
len(dt_boxes), det_elapse)) | |
if dt_boxes is None: | |
return None, None | |
img_crop_list = [] | |
for i in range(len(dt_boxes)): | |
det_box = dt_boxes[i] | |
x0, y0, x1, y1 = expand(2, det_box, img.shape) | |
text_rect = img[int(y0):int(y1), int(x0):int(x1), :] | |
img_crop_list.append(text_rect) | |
rec_res, rec_elapse = self.text_recognizer(img_crop_list) | |
logger.debug("rec_res num : {}, elapse : {}".format( | |
len(rec_res), rec_elapse)) | |
return dt_boxes, rec_res, det_elapse, rec_elapse | |
def to_excel(html_table, excel_path): | |
from tablepyxl import tablepyxl | |
tablepyxl.document_to_xl(html_table, excel_path) | |
def main(args): | |
image_file_list = get_image_file_list(args.image_dir) | |
image_file_list = image_file_list[args.process_id::args.total_process_num] | |
os.makedirs(args.output, exist_ok=True) | |
table_sys = TableSystem(args) | |
img_num = len(image_file_list) | |
f_html = open( | |
os.path.join(args.output, 'show.html'), mode='w', encoding='utf-8') | |
f_html.write('<html>\n<body>\n') | |
f_html.write('<table border="1">\n') | |
f_html.write( | |
"<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />" | |
) | |
f_html.write("<tr>\n") | |
f_html.write('<td>img name\n') | |
f_html.write('<td>ori image</td>') | |
f_html.write('<td>table html</td>') | |
f_html.write('<td>cell box</td>') | |
f_html.write("</tr>\n") | |
for i, image_file in enumerate(image_file_list): | |
logger.info("[{}/{}] {}".format(i, img_num, image_file)) | |
img, flag, _ = check_and_read(image_file) | |
excel_path = os.path.join( | |
args.output, os.path.basename(image_file).split('.')[0] + '.xlsx') | |
if not flag: | |
img = cv2.imread(image_file) | |
if img is None: | |
logger.error("error in loading image:{}".format(image_file)) | |
continue | |
starttime = time.time() | |
pred_res, _ = table_sys(img) | |
pred_html = pred_res['html'] | |
logger.info(pred_html) | |
to_excel(pred_html, excel_path) | |
logger.info('excel saved to {}'.format(excel_path)) | |
elapse = time.time() - starttime | |
logger.info("Predict time : {:.3f}s".format(elapse)) | |
if len(pred_res['cell_bbox']) > 0 and len(pred_res['cell_bbox'][ | |
0]) == 4: | |
img = predict_strture.draw_rectangle(image_file, | |
pred_res['cell_bbox']) | |
else: | |
img = utility.draw_boxes(img, pred_res['cell_bbox']) | |
img_save_path = os.path.join(args.output, os.path.basename(image_file)) | |
cv2.imwrite(img_save_path, img) | |
f_html.write("<tr>\n") | |
f_html.write(f'<td> {os.path.basename(image_file)} <br/>\n') | |
f_html.write(f'<td><img src="{image_file}" width=640></td>\n') | |
f_html.write('<td><table border="1">' + pred_html.replace( | |
'<html><body><table>', '').replace('</table></body></html>', '') + | |
'</table></td>\n') | |
f_html.write( | |
f'<td><img src="{os.path.basename(image_file)}" width=640></td>\n') | |
f_html.write("</tr>\n") | |
f_html.write("</table>\n") | |
f_html.close() | |
if args.benchmark: | |
table_sys.table_structurer.autolog.report() | |
if __name__ == "__main__": | |
args = parse_args() | |
if args.use_mp: | |
import subprocess | |
p_list = [] | |
total_process_num = args.total_process_num | |
for process_id in range(total_process_num): | |
cmd = [sys.executable, "-u"] + sys.argv + [ | |
"--process_id={}".format(process_id), | |
"--use_mp={}".format(False) | |
] | |
p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout) | |
p_list.append(p) | |
for p in p_list: | |
p.wait() | |
else: | |
main(args) | |