Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/open-mmlab/mmocr/blob/main/mmocr/datasets/pipelines/textdet_targets/drrg_targets.py | |
""" | |
import cv2 | |
import numpy as np | |
from ppocr.utils.utility import check_install | |
from numpy.linalg import norm | |
class DRRGTargets(object): | |
def __init__(self, | |
orientation_thr=2.0, | |
resample_step=8.0, | |
num_min_comps=9, | |
num_max_comps=600, | |
min_width=8.0, | |
max_width=24.0, | |
center_region_shrink_ratio=0.3, | |
comp_shrink_ratio=1.0, | |
comp_w_h_ratio=0.3, | |
text_comp_nms_thr=0.25, | |
min_rand_half_height=8.0, | |
max_rand_half_height=24.0, | |
jitter_level=0.2, | |
**kwargs): | |
super().__init__() | |
self.orientation_thr = orientation_thr | |
self.resample_step = resample_step | |
self.num_max_comps = num_max_comps | |
self.num_min_comps = num_min_comps | |
self.min_width = min_width | |
self.max_width = max_width | |
self.center_region_shrink_ratio = center_region_shrink_ratio | |
self.comp_shrink_ratio = comp_shrink_ratio | |
self.comp_w_h_ratio = comp_w_h_ratio | |
self.text_comp_nms_thr = text_comp_nms_thr | |
self.min_rand_half_height = min_rand_half_height | |
self.max_rand_half_height = max_rand_half_height | |
self.jitter_level = jitter_level | |
self.eps = 1e-8 | |
def vector_angle(self, vec1, vec2): | |
if vec1.ndim > 1: | |
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps).reshape((-1, 1)) | |
else: | |
unit_vec1 = vec1 / (norm(vec1, axis=-1) + self.eps) | |
if vec2.ndim > 1: | |
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps).reshape((-1, 1)) | |
else: | |
unit_vec2 = vec2 / (norm(vec2, axis=-1) + self.eps) | |
return np.arccos( | |
np.clip( | |
np.sum(unit_vec1 * unit_vec2, axis=-1), -1.0, 1.0)) | |
def vector_slope(self, vec): | |
assert len(vec) == 2 | |
return abs(vec[1] / (vec[0] + self.eps)) | |
def vector_sin(self, vec): | |
assert len(vec) == 2 | |
return vec[1] / (norm(vec) + self.eps) | |
def vector_cos(self, vec): | |
assert len(vec) == 2 | |
return vec[0] / (norm(vec) + self.eps) | |
def find_head_tail(self, points, orientation_thr): | |
assert points.ndim == 2 | |
assert points.shape[0] >= 4 | |
assert points.shape[1] == 2 | |
assert isinstance(orientation_thr, float) | |
if len(points) > 4: | |
pad_points = np.vstack([points, points[0]]) | |
edge_vec = pad_points[1:] - pad_points[:-1] | |
theta_sum = [] | |
adjacent_vec_theta = [] | |
for i, edge_vec1 in enumerate(edge_vec): | |
adjacent_ind = [x % len(edge_vec) for x in [i - 1, i + 1]] | |
adjacent_edge_vec = edge_vec[adjacent_ind] | |
temp_theta_sum = np.sum( | |
self.vector_angle(edge_vec1, adjacent_edge_vec)) | |
temp_adjacent_theta = self.vector_angle(adjacent_edge_vec[0], | |
adjacent_edge_vec[1]) | |
theta_sum.append(temp_theta_sum) | |
adjacent_vec_theta.append(temp_adjacent_theta) | |
theta_sum_score = np.array(theta_sum) / np.pi | |
adjacent_theta_score = np.array(adjacent_vec_theta) / np.pi | |
poly_center = np.mean(points, axis=0) | |
edge_dist = np.maximum( | |
norm( | |
pad_points[1:] - poly_center, axis=-1), | |
norm( | |
pad_points[:-1] - poly_center, axis=-1)) | |
dist_score = edge_dist / (np.max(edge_dist) + self.eps) | |
position_score = np.zeros(len(edge_vec)) | |
score = 0.5 * theta_sum_score + 0.15 * adjacent_theta_score | |
score += 0.35 * dist_score | |
if len(points) % 2 == 0: | |
position_score[(len(score) // 2 - 1)] += 1 | |
position_score[-1] += 1 | |
score += 0.1 * position_score | |
pad_score = np.concatenate([score, score]) | |
score_matrix = np.zeros((len(score), len(score) - 3)) | |
x = np.arange(len(score) - 3) / float(len(score) - 4) | |
gaussian = 1. / (np.sqrt(2. * np.pi) * 0.5) * np.exp(-np.power( | |
(x - 0.5) / 0.5, 2.) / 2) | |
gaussian = gaussian / np.max(gaussian) | |
for i in range(len(score)): | |
score_matrix[i, :] = score[i] + pad_score[(i + 2):(i + len( | |
score) - 1)] * gaussian * 0.3 | |
head_start, tail_increment = np.unravel_index(score_matrix.argmax(), | |
score_matrix.shape) | |
tail_start = (head_start + tail_increment + 2) % len(points) | |
head_end = (head_start + 1) % len(points) | |
tail_end = (tail_start + 1) % len(points) | |
if head_end > tail_end: | |
head_start, tail_start = tail_start, head_start | |
head_end, tail_end = tail_end, head_end | |
head_inds = [head_start, head_end] | |
tail_inds = [tail_start, tail_end] | |
else: | |
if self.vector_slope(points[1] - points[0]) + self.vector_slope( | |
points[3] - points[2]) < self.vector_slope(points[ | |
2] - points[1]) + self.vector_slope(points[0] - points[ | |
3]): | |
horizontal_edge_inds = [[0, 1], [2, 3]] | |
vertical_edge_inds = [[3, 0], [1, 2]] | |
else: | |
horizontal_edge_inds = [[3, 0], [1, 2]] | |
vertical_edge_inds = [[0, 1], [2, 3]] | |
vertical_len_sum = norm(points[vertical_edge_inds[0][0]] - points[ | |
vertical_edge_inds[0][1]]) + norm(points[vertical_edge_inds[1][ | |
0]] - points[vertical_edge_inds[1][1]]) | |
horizontal_len_sum = norm(points[horizontal_edge_inds[0][ | |
0]] - points[horizontal_edge_inds[0][1]]) + norm(points[ | |
horizontal_edge_inds[1][0]] - points[horizontal_edge_inds[1] | |
[1]]) | |
if vertical_len_sum > horizontal_len_sum * orientation_thr: | |
head_inds = horizontal_edge_inds[0] | |
tail_inds = horizontal_edge_inds[1] | |
else: | |
head_inds = vertical_edge_inds[0] | |
tail_inds = vertical_edge_inds[1] | |
return head_inds, tail_inds | |
def reorder_poly_edge(self, points): | |
assert points.ndim == 2 | |
assert points.shape[0] >= 4 | |
assert points.shape[1] == 2 | |
head_inds, tail_inds = self.find_head_tail(points, self.orientation_thr) | |
head_edge, tail_edge = points[head_inds], points[tail_inds] | |
pad_points = np.vstack([points, points]) | |
if tail_inds[1] < 1: | |
tail_inds[1] = len(points) | |
sideline1 = pad_points[head_inds[1]:tail_inds[1]] | |
sideline2 = pad_points[tail_inds[1]:(head_inds[1] + len(points))] | |
sideline_mean_shift = np.mean( | |
sideline1, axis=0) - np.mean( | |
sideline2, axis=0) | |
if sideline_mean_shift[1] > 0: | |
top_sideline, bot_sideline = sideline2, sideline1 | |
else: | |
top_sideline, bot_sideline = sideline1, sideline2 | |
return head_edge, tail_edge, top_sideline, bot_sideline | |
def cal_curve_length(self, line): | |
assert line.ndim == 2 | |
assert len(line) >= 2 | |
edges_length = np.sqrt((line[1:, 0] - line[:-1, 0])**2 + (line[ | |
1:, 1] - line[:-1, 1])**2) | |
total_length = np.sum(edges_length) | |
return edges_length, total_length | |
def resample_line(self, line, n): | |
assert line.ndim == 2 | |
assert line.shape[0] >= 2 | |
assert line.shape[1] == 2 | |
assert isinstance(n, int) | |
assert n > 2 | |
edges_length, total_length = self.cal_curve_length(line) | |
t_org = np.insert(np.cumsum(edges_length), 0, 0) | |
unit_t = total_length / (n - 1) | |
t_equidistant = np.arange(1, n - 1, dtype=np.float32) * unit_t | |
edge_ind = 0 | |
points = [line[0]] | |
for t in t_equidistant: | |
while edge_ind < len(edges_length) - 1 and t > t_org[edge_ind + 1]: | |
edge_ind += 1 | |
t_l, t_r = t_org[edge_ind], t_org[edge_ind + 1] | |
weight = np.array( | |
[t_r - t, t - t_l], dtype=np.float32) / (t_r - t_l + self.eps) | |
p_coords = np.dot(weight, line[[edge_ind, edge_ind + 1]]) | |
points.append(p_coords) | |
points.append(line[-1]) | |
resampled_line = np.vstack(points) | |
return resampled_line | |
def resample_sidelines(self, sideline1, sideline2, resample_step): | |
assert sideline1.ndim == sideline2.ndim == 2 | |
assert sideline1.shape[1] == sideline2.shape[1] == 2 | |
assert sideline1.shape[0] >= 2 | |
assert sideline2.shape[0] >= 2 | |
assert isinstance(resample_step, float) | |
_, length1 = self.cal_curve_length(sideline1) | |
_, length2 = self.cal_curve_length(sideline2) | |
avg_length = (length1 + length2) / 2 | |
resample_point_num = max(int(float(avg_length) / resample_step) + 1, 3) | |
resampled_line1 = self.resample_line(sideline1, resample_point_num) | |
resampled_line2 = self.resample_line(sideline2, resample_point_num) | |
return resampled_line1, resampled_line2 | |
def dist_point2line(self, point, line): | |
assert isinstance(line, tuple) | |
point1, point2 = line | |
d = abs(np.cross(point2 - point1, point - point1)) / ( | |
norm(point2 - point1) + 1e-8) | |
return d | |
def draw_center_region_maps(self, top_line, bot_line, center_line, | |
center_region_mask, top_height_map, | |
bot_height_map, sin_map, cos_map, | |
region_shrink_ratio): | |
assert top_line.shape == bot_line.shape == center_line.shape | |
assert (center_region_mask.shape == top_height_map.shape == | |
bot_height_map.shape == sin_map.shape == cos_map.shape) | |
assert isinstance(region_shrink_ratio, float) | |
h, w = center_region_mask.shape | |
for i in range(0, len(center_line) - 1): | |
top_mid_point = (top_line[i] + top_line[i + 1]) / 2 | |
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2 | |
sin_theta = self.vector_sin(top_mid_point - bot_mid_point) | |
cos_theta = self.vector_cos(top_mid_point - bot_mid_point) | |
tl = center_line[i] + (top_line[i] - center_line[i] | |
) * region_shrink_ratio | |
tr = center_line[i + 1] + (top_line[i + 1] - center_line[i + 1] | |
) * region_shrink_ratio | |
br = center_line[i + 1] + (bot_line[i + 1] - center_line[i + 1] | |
) * region_shrink_ratio | |
bl = center_line[i] + (bot_line[i] - center_line[i] | |
) * region_shrink_ratio | |
current_center_box = np.vstack([tl, tr, br, bl]).astype(np.int32) | |
cv2.fillPoly(center_region_mask, [current_center_box], color=1) | |
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta) | |
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta) | |
current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0, | |
w - 1) | |
current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0, | |
h - 1) | |
min_coord = np.min(current_center_box, axis=0).astype(np.int32) | |
max_coord = np.max(current_center_box, axis=0).astype(np.int32) | |
current_center_box = current_center_box - min_coord | |
box_sz = (max_coord - min_coord + 1) | |
center_box_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8) | |
cv2.fillPoly(center_box_mask, [current_center_box], color=1) | |
inds = np.argwhere(center_box_mask > 0) | |
inds = inds + (min_coord[1], min_coord[0]) | |
inds_xy = np.fliplr(inds) | |
top_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line( | |
inds_xy, (top_line[i], top_line[i + 1])) | |
bot_height_map[(inds[:, 0], inds[:, 1])] = self.dist_point2line( | |
inds_xy, (bot_line[i], bot_line[i + 1])) | |
def generate_center_mask_attrib_maps(self, img_size, text_polys): | |
assert isinstance(img_size, tuple) | |
h, w = img_size | |
center_lines = [] | |
center_region_mask = np.zeros((h, w), np.uint8) | |
top_height_map = np.zeros((h, w), dtype=np.float32) | |
bot_height_map = np.zeros((h, w), dtype=np.float32) | |
sin_map = np.zeros((h, w), dtype=np.float32) | |
cos_map = np.zeros((h, w), dtype=np.float32) | |
for poly in text_polys: | |
polygon_points = poly | |
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points) | |
resampled_top_line, resampled_bot_line = self.resample_sidelines( | |
top_line, bot_line, self.resample_step) | |
resampled_bot_line = resampled_bot_line[::-1] | |
center_line = (resampled_top_line + resampled_bot_line) / 2 | |
if self.vector_slope(center_line[-1] - center_line[0]) > 2: | |
if (center_line[-1] - center_line[0])[1] < 0: | |
center_line = center_line[::-1] | |
resampled_top_line = resampled_top_line[::-1] | |
resampled_bot_line = resampled_bot_line[::-1] | |
else: | |
if (center_line[-1] - center_line[0])[0] < 0: | |
center_line = center_line[::-1] | |
resampled_top_line = resampled_top_line[::-1] | |
resampled_bot_line = resampled_bot_line[::-1] | |
line_head_shrink_len = np.clip( | |
(norm(top_line[0] - bot_line[0]) * self.comp_w_h_ratio), | |
self.min_width, self.max_width) / 2 | |
line_tail_shrink_len = np.clip( | |
(norm(top_line[-1] - bot_line[-1]) * self.comp_w_h_ratio), | |
self.min_width, self.max_width) / 2 | |
num_head_shrink = int(line_head_shrink_len // self.resample_step) | |
num_tail_shrink = int(line_tail_shrink_len // self.resample_step) | |
if len(center_line) > num_head_shrink + num_tail_shrink + 2: | |
center_line = center_line[num_head_shrink:len(center_line) - | |
num_tail_shrink] | |
resampled_top_line = resampled_top_line[num_head_shrink:len( | |
resampled_top_line) - num_tail_shrink] | |
resampled_bot_line = resampled_bot_line[num_head_shrink:len( | |
resampled_bot_line) - num_tail_shrink] | |
center_lines.append(center_line.astype(np.int32)) | |
self.draw_center_region_maps( | |
resampled_top_line, resampled_bot_line, center_line, | |
center_region_mask, top_height_map, bot_height_map, sin_map, | |
cos_map, self.center_region_shrink_ratio) | |
return (center_lines, center_region_mask, top_height_map, | |
bot_height_map, sin_map, cos_map) | |
def generate_rand_comp_attribs(self, num_rand_comps, center_sample_mask): | |
assert isinstance(num_rand_comps, int) | |
assert num_rand_comps > 0 | |
assert center_sample_mask.ndim == 2 | |
h, w = center_sample_mask.shape | |
max_rand_half_height = self.max_rand_half_height | |
min_rand_half_height = self.min_rand_half_height | |
max_rand_height = max_rand_half_height * 2 | |
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio, | |
self.min_width, self.max_width) | |
margin = int( | |
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1 | |
if 2 * margin + 1 > min(h, w): | |
assert min(h, w) > (np.sqrt(2) * (self.min_width + 1)) | |
max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1) | |
min_rand_half_height = max(max_rand_half_height / 4, | |
self.min_width / 2) | |
max_rand_height = max_rand_half_height * 2 | |
max_rand_width = np.clip(max_rand_height * self.comp_w_h_ratio, | |
self.min_width, self.max_width) | |
margin = int( | |
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1 | |
inner_center_sample_mask = np.zeros_like(center_sample_mask) | |
inner_center_sample_mask[margin:h - margin, margin:w - margin] = \ | |
center_sample_mask[margin:h - margin, margin:w - margin] | |
kernel_size = int(np.clip(max_rand_half_height, 7, 21)) | |
inner_center_sample_mask = cv2.erode( | |
inner_center_sample_mask, | |
np.ones((kernel_size, kernel_size), np.uint8)) | |
center_candidates = np.argwhere(inner_center_sample_mask > 0) | |
num_center_candidates = len(center_candidates) | |
sample_inds = np.random.choice(num_center_candidates, num_rand_comps) | |
rand_centers = center_candidates[sample_inds] | |
rand_top_height = np.random.randint( | |
min_rand_half_height, | |
max_rand_half_height, | |
size=(len(rand_centers), 1)) | |
rand_bot_height = np.random.randint( | |
min_rand_half_height, | |
max_rand_half_height, | |
size=(len(rand_centers), 1)) | |
rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1 | |
rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1 | |
scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8)) | |
rand_cos = rand_cos * scale | |
rand_sin = rand_sin * scale | |
height = (rand_top_height + rand_bot_height) | |
width = np.clip(height * self.comp_w_h_ratio, self.min_width, | |
self.max_width) | |
rand_comp_attribs = np.hstack([ | |
rand_centers[:, ::-1], height, width, rand_cos, rand_sin, | |
np.zeros_like(rand_sin) | |
]).astype(np.float32) | |
return rand_comp_attribs | |
def jitter_comp_attribs(self, comp_attribs, jitter_level): | |
"""Jitter text components attributes. | |
Args: | |
comp_attribs (ndarray): The text component attributes. | |
jitter_level (float): The jitter level of text components | |
attributes. | |
Returns: | |
jittered_comp_attribs (ndarray): The jittered text component | |
attributes (x, y, h, w, cos, sin, comp_label). | |
""" | |
assert comp_attribs.shape[1] == 7 | |
assert comp_attribs.shape[0] > 0 | |
assert isinstance(jitter_level, float) | |
x = comp_attribs[:, 0].reshape((-1, 1)) | |
y = comp_attribs[:, 1].reshape((-1, 1)) | |
h = comp_attribs[:, 2].reshape((-1, 1)) | |
w = comp_attribs[:, 3].reshape((-1, 1)) | |
cos = comp_attribs[:, 4].reshape((-1, 1)) | |
sin = comp_attribs[:, 5].reshape((-1, 1)) | |
comp_labels = comp_attribs[:, 6].reshape((-1, 1)) | |
x += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * ( | |
h * np.abs(cos) + w * np.abs(sin)) * jitter_level | |
y += (np.random.random(size=(len(comp_attribs), 1)) - 0.5) * ( | |
h * np.abs(sin) + w * np.abs(cos)) * jitter_level | |
h += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 | |
) * h * jitter_level | |
w += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 | |
) * w * jitter_level | |
cos += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 | |
) * 2 * jitter_level | |
sin += (np.random.random(size=(len(comp_attribs), 1)) - 0.5 | |
) * 2 * jitter_level | |
scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8)) | |
cos = cos * scale | |
sin = sin * scale | |
jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, comp_labels]) | |
return jittered_comp_attribs | |
def generate_comp_attribs(self, center_lines, text_mask, center_region_mask, | |
top_height_map, bot_height_map, sin_map, cos_map): | |
"""Generate text component attributes. | |
Args: | |
center_lines (list[ndarray]): The list of text center lines . | |
text_mask (ndarray): The text region mask. | |
center_region_mask (ndarray): The text center region mask. | |
top_height_map (ndarray): The map on which the distance from points | |
to top side lines will be drawn for each pixel in text center | |
regions. | |
bot_height_map (ndarray): The map on which the distance from points | |
to bottom side lines will be drawn for each pixel in text | |
center regions. | |
sin_map (ndarray): The sin(theta) map where theta is the angle | |
between vector (top point - bottom point) and vector (1, 0). | |
cos_map (ndarray): The cos(theta) map where theta is the angle | |
between vector (top point - bottom point) and vector (1, 0). | |
Returns: | |
pad_comp_attribs (ndarray): The padded text component attributes | |
of a fixed size. | |
""" | |
assert isinstance(center_lines, list) | |
assert ( | |
text_mask.shape == center_region_mask.shape == top_height_map.shape | |
== bot_height_map.shape == sin_map.shape == cos_map.shape) | |
center_lines_mask = np.zeros_like(center_region_mask) | |
cv2.polylines(center_lines_mask, center_lines, 0, 1, 1) | |
center_lines_mask = center_lines_mask * center_region_mask | |
comp_centers = np.argwhere(center_lines_mask > 0) | |
y = comp_centers[:, 0] | |
x = comp_centers[:, 1] | |
top_height = top_height_map[y, x].reshape( | |
(-1, 1)) * self.comp_shrink_ratio | |
bot_height = bot_height_map[y, x].reshape( | |
(-1, 1)) * self.comp_shrink_ratio | |
sin = sin_map[y, x].reshape((-1, 1)) | |
cos = cos_map[y, x].reshape((-1, 1)) | |
top_mid_points = comp_centers + np.hstack( | |
[top_height * sin, top_height * cos]) | |
bot_mid_points = comp_centers - np.hstack( | |
[bot_height * sin, bot_height * cos]) | |
width = (top_height + bot_height) * self.comp_w_h_ratio | |
width = np.clip(width, self.min_width, self.max_width) | |
r = width / 2 | |
tl = top_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos]) | |
tr = top_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos]) | |
br = bot_mid_points[:, ::-1] + np.hstack([-r * sin, r * cos]) | |
bl = bot_mid_points[:, ::-1] - np.hstack([-r * sin, r * cos]) | |
text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32) | |
score = np.ones((text_comps.shape[0], 1), dtype=np.float32) | |
text_comps = np.hstack([text_comps, score]) | |
check_install('lanms', 'lanms-neo') | |
from lanms import merge_quadrangle_n9 as la_nms | |
text_comps = la_nms(text_comps, self.text_comp_nms_thr) | |
if text_comps.shape[0] >= 1: | |
img_h, img_w = center_region_mask.shape | |
text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1) | |
text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1) | |
comp_centers = np.mean( | |
text_comps[:, 0:8].reshape((-1, 4, 2)), axis=1).astype(np.int32) | |
x = comp_centers[:, 0] | |
y = comp_centers[:, 1] | |
height = (top_height_map[y, x] + bot_height_map[y, x]).reshape( | |
(-1, 1)) | |
width = np.clip(height * self.comp_w_h_ratio, self.min_width, | |
self.max_width) | |
cos = cos_map[y, x].reshape((-1, 1)) | |
sin = sin_map[y, x].reshape((-1, 1)) | |
_, comp_label_mask = cv2.connectedComponents( | |
center_region_mask, connectivity=8) | |
comp_labels = comp_label_mask[y, x].reshape( | |
(-1, 1)).astype(np.float32) | |
x = x.reshape((-1, 1)).astype(np.float32) | |
y = y.reshape((-1, 1)).astype(np.float32) | |
comp_attribs = np.hstack( | |
[x, y, height, width, cos, sin, comp_labels]) | |
comp_attribs = self.jitter_comp_attribs(comp_attribs, | |
self.jitter_level) | |
if comp_attribs.shape[0] < self.num_min_comps: | |
num_rand_comps = self.num_min_comps - comp_attribs.shape[0] | |
rand_comp_attribs = self.generate_rand_comp_attribs( | |
num_rand_comps, 1 - text_mask) | |
comp_attribs = np.vstack([comp_attribs, rand_comp_attribs]) | |
else: | |
comp_attribs = self.generate_rand_comp_attribs(self.num_min_comps, | |
1 - text_mask) | |
num_comps = (np.ones( | |
(comp_attribs.shape[0], 1), | |
dtype=np.float32) * comp_attribs.shape[0]) | |
comp_attribs = np.hstack([num_comps, comp_attribs]) | |
if comp_attribs.shape[0] > self.num_max_comps: | |
comp_attribs = comp_attribs[:self.num_max_comps, :] | |
comp_attribs[:, 0] = self.num_max_comps | |
pad_comp_attribs = np.zeros( | |
(self.num_max_comps, comp_attribs.shape[1]), dtype=np.float32) | |
pad_comp_attribs[:comp_attribs.shape[0], :] = comp_attribs | |
return pad_comp_attribs | |
def generate_text_region_mask(self, img_size, text_polys): | |
"""Generate text center region mask and geometry attribute maps. | |
Args: | |
img_size (tuple): The image size (height, width). | |
text_polys (list[list[ndarray]]): The list of text polygons. | |
Returns: | |
text_region_mask (ndarray): The text region mask. | |
""" | |
assert isinstance(img_size, tuple) | |
h, w = img_size | |
text_region_mask = np.zeros((h, w), dtype=np.uint8) | |
for poly in text_polys: | |
polygon = np.array(poly, dtype=np.int32).reshape((1, -1, 2)) | |
cv2.fillPoly(text_region_mask, polygon, 1) | |
return text_region_mask | |
def generate_effective_mask(self, mask_size: tuple, polygons_ignore): | |
"""Generate effective mask by setting the ineffective regions to 0 and | |
effective regions to 1. | |
Args: | |
mask_size (tuple): The mask size. | |
polygons_ignore (list[[ndarray]]: The list of ignored text | |
polygons. | |
Returns: | |
mask (ndarray): The effective mask of (height, width). | |
""" | |
mask = np.ones(mask_size, dtype=np.uint8) | |
for poly in polygons_ignore: | |
instance = poly.astype(np.int32).reshape(1, -1, 2) | |
cv2.fillPoly(mask, instance, 0) | |
return mask | |
def generate_targets(self, data): | |
"""Generate the gt targets for DRRG. | |
Args: | |
data (dict): The input result dictionary. | |
Returns: | |
data (dict): The output result dictionary. | |
""" | |
assert isinstance(data, dict) | |
image = data['image'] | |
polygons = data['polys'] | |
ignore_tags = data['ignore_tags'] | |
h, w, _ = image.shape | |
polygon_masks = [] | |
polygon_masks_ignore = [] | |
for tag, polygon in zip(ignore_tags, polygons): | |
if tag is True: | |
polygon_masks_ignore.append(polygon) | |
else: | |
polygon_masks.append(polygon) | |
gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks) | |
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore) | |
(center_lines, gt_center_region_mask, gt_top_height_map, | |
gt_bot_height_map, gt_sin_map, | |
gt_cos_map) = self.generate_center_mask_attrib_maps((h, w), | |
polygon_masks) | |
gt_comp_attribs = self.generate_comp_attribs( | |
center_lines, gt_text_mask, gt_center_region_mask, | |
gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map) | |
mapping = { | |
'gt_text_mask': gt_text_mask, | |
'gt_center_region_mask': gt_center_region_mask, | |
'gt_mask': gt_mask, | |
'gt_top_height_map': gt_top_height_map, | |
'gt_bot_height_map': gt_bot_height_map, | |
'gt_sin_map': gt_sin_map, | |
'gt_cos_map': gt_cos_map | |
} | |
data.update(mapping) | |
data['gt_comp_attribs'] = gt_comp_attribs | |
return data | |
def __call__(self, data): | |
data = self.generate_targets(data) | |
return data | |