Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import unicode_literals | |
import numpy as np | |
import imgaug | |
import imgaug.augmenters as iaa | |
class AugmenterBuilder(object): | |
def __init__(self): | |
pass | |
def build(self, args, root=True): | |
if args is None or len(args) == 0: | |
return None | |
elif isinstance(args, list): | |
if root: | |
sequence = [self.build(value, root=False) for value in args] | |
return iaa.Sequential(sequence) | |
else: | |
return getattr(iaa, args[0])( | |
*[self.to_tuple_if_list(a) for a in args[1:]]) | |
elif isinstance(args, dict): | |
cls = getattr(iaa, args['type']) | |
return cls(**{ | |
k: self.to_tuple_if_list(v) | |
for k, v in args['args'].items() | |
}) | |
else: | |
raise RuntimeError('unknown augmenter arg: ' + str(args)) | |
def to_tuple_if_list(self, obj): | |
if isinstance(obj, list): | |
return tuple(obj) | |
return obj | |
class IaaAugment(): | |
def __init__(self, augmenter_args=None, **kwargs): | |
if augmenter_args is None: | |
augmenter_args = [{ | |
'type': 'Fliplr', | |
'args': { | |
'p': 0.5 | |
} | |
}, { | |
'type': 'Affine', | |
'args': { | |
'rotate': [-10, 10] | |
} | |
}, { | |
'type': 'Resize', | |
'args': { | |
'size': [0.5, 3] | |
} | |
}] | |
self.augmenter = AugmenterBuilder().build(augmenter_args) | |
def __call__(self, data): | |
image = data['image'] | |
shape = image.shape | |
if self.augmenter: | |
aug = self.augmenter.to_deterministic() | |
data['image'] = aug.augment_image(image) | |
data = self.may_augment_annotation(aug, data, shape) | |
return data | |
def may_augment_annotation(self, aug, data, shape): | |
if aug is None: | |
return data | |
line_polys = [] | |
for poly in data['polys']: | |
new_poly = self.may_augment_poly(aug, shape, poly) | |
line_polys.append(new_poly) | |
data['polys'] = np.array(line_polys) | |
return data | |
def may_augment_poly(self, aug, img_shape, poly): | |
keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly] | |
keypoints = aug.augment_keypoints( | |
[imgaug.KeypointsOnImage( | |
keypoints, shape=img_shape)])[0].keypoints | |
poly = [(p.x, p.y) for p in keypoints] | |
return poly | |