Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import unicode_literals | |
import copy | |
import numpy as np | |
import string | |
from shapely.geometry import LineString, Point, Polygon | |
import json | |
import copy | |
from random import sample | |
from ppocr.utils.logging import get_logger | |
from ppocr.data.imaug.vqa.augment import order_by_tbyx | |
class ClsLabelEncode(object): | |
def __init__(self, label_list, **kwargs): | |
self.label_list = label_list | |
def __call__(self, data): | |
label = data['label'] | |
if label not in self.label_list: | |
return None | |
label = self.label_list.index(label) | |
data['label'] = label | |
return data | |
class DetLabelEncode(object): | |
def __init__(self, **kwargs): | |
pass | |
def __call__(self, data): | |
label = data['label'] | |
label = json.loads(label) | |
nBox = len(label) | |
boxes, txts, txt_tags = [], [], [] | |
for bno in range(0, nBox): | |
box = label[bno]['points'] | |
txt = label[bno]['transcription'] | |
boxes.append(box) | |
txts.append(txt) | |
if txt in ['*', '###']: | |
txt_tags.append(True) | |
else: | |
txt_tags.append(False) | |
if len(boxes) == 0: | |
return None | |
boxes = self.expand_points_num(boxes) | |
boxes = np.array(boxes, dtype=np.float32) | |
txt_tags = np.array(txt_tags, dtype=np.bool_) | |
data['polys'] = boxes | |
data['texts'] = txts | |
data['ignore_tags'] = txt_tags | |
return data | |
def order_points_clockwise(self, pts): | |
rect = np.zeros((4, 2), dtype="float32") | |
s = pts.sum(axis=1) | |
rect[0] = pts[np.argmin(s)] | |
rect[2] = pts[np.argmax(s)] | |
tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0) | |
diff = np.diff(np.array(tmp), axis=1) | |
rect[1] = tmp[np.argmin(diff)] | |
rect[3] = tmp[np.argmax(diff)] | |
return rect | |
def expand_points_num(self, boxes): | |
max_points_num = 0 | |
for box in boxes: | |
if len(box) > max_points_num: | |
max_points_num = len(box) | |
ex_boxes = [] | |
for box in boxes: | |
ex_box = box + [box[-1]] * (max_points_num - len(box)) | |
ex_boxes.append(ex_box) | |
return ex_boxes | |
class BaseRecLabelEncode(object): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
lower=False): | |
self.max_text_len = max_text_length | |
self.beg_str = "sos" | |
self.end_str = "eos" | |
self.lower = lower | |
if character_dict_path is None: | |
logger = get_logger() | |
logger.warning( | |
"The character_dict_path is None, model can only recognize number and lower letters" | |
) | |
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" | |
dict_character = list(self.character_str) | |
self.lower = True | |
else: | |
self.character_str = [] | |
with open(character_dict_path, "rb") as fin: | |
lines = fin.readlines() | |
for line in lines: | |
line = line.decode('utf-8').strip("\n").strip("\r\n") | |
self.character_str.append(line) | |
if use_space_char: | |
self.character_str.append(" ") | |
dict_character = list(self.character_str) | |
dict_character = self.add_special_char(dict_character) | |
self.dict = {} | |
for i, char in enumerate(dict_character): | |
self.dict[char] = i | |
self.character = dict_character | |
def add_special_char(self, dict_character): | |
return dict_character | |
def encode(self, text): | |
"""convert text-label into text-index. | |
input: | |
text: text labels of each image. [batch_size] | |
output: | |
text: concatenated text index for CTCLoss. | |
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] | |
length: length of each text. [batch_size] | |
""" | |
if len(text) == 0 or len(text) > self.max_text_len: | |
return None | |
if self.lower: | |
text = text.lower() | |
text_list = [] | |
for char in text: | |
if char not in self.dict: | |
# logger = get_logger() | |
# logger.warning('{} is not in dict'.format(char)) | |
continue | |
text_list.append(self.dict[char]) | |
if len(text_list) == 0: | |
return None | |
return text_list | |
class CTCLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(CTCLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
data['length'] = np.array(len(text)) | |
text = text + [0] * (self.max_text_len - len(text)) | |
data['label'] = np.array(text) | |
label = [0] * len(self.character) | |
for x in text: | |
label[x] += 1 | |
data['label_ace'] = np.array(label) | |
return data | |
def add_special_char(self, dict_character): | |
dict_character = ['blank'] + dict_character | |
return dict_character | |
class E2ELabelEncodeTest(BaseRecLabelEncode): | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(E2ELabelEncodeTest, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def __call__(self, data): | |
import json | |
padnum = len(self.dict) | |
label = data['label'] | |
label = json.loads(label) | |
nBox = len(label) | |
boxes, txts, txt_tags = [], [], [] | |
for bno in range(0, nBox): | |
box = label[bno]['points'] | |
txt = label[bno]['transcription'] | |
boxes.append(box) | |
txts.append(txt) | |
if txt in ['*', '###']: | |
txt_tags.append(True) | |
else: | |
txt_tags.append(False) | |
boxes = np.array(boxes, dtype=np.float32) | |
txt_tags = np.array(txt_tags, dtype=np.bool_) | |
data['polys'] = boxes | |
data['ignore_tags'] = txt_tags | |
temp_texts = [] | |
for text in txts: | |
text = text.lower() | |
text = self.encode(text) | |
if text is None: | |
return None | |
text = text + [padnum] * (self.max_text_len - len(text) | |
) # use 36 to pad | |
temp_texts.append(text) | |
data['texts'] = np.array(temp_texts) | |
return data | |
class E2ELabelEncodeTrain(object): | |
def __init__(self, **kwargs): | |
pass | |
def __call__(self, data): | |
import json | |
label = data['label'] | |
label = json.loads(label) | |
nBox = len(label) | |
boxes, txts, txt_tags = [], [], [] | |
for bno in range(0, nBox): | |
box = label[bno]['points'] | |
txt = label[bno]['transcription'] | |
boxes.append(box) | |
txts.append(txt) | |
if txt in ['*', '###']: | |
txt_tags.append(True) | |
else: | |
txt_tags.append(False) | |
boxes = np.array(boxes, dtype=np.float32) | |
txt_tags = np.array(txt_tags, dtype=np.bool_) | |
data['polys'] = boxes | |
data['texts'] = txts | |
data['ignore_tags'] = txt_tags | |
return data | |
class KieLabelEncode(object): | |
def __init__(self, | |
character_dict_path, | |
class_path, | |
norm=10, | |
directed=False, | |
**kwargs): | |
super(KieLabelEncode, self).__init__() | |
self.dict = dict({'': 0}) | |
self.label2classid_map = dict() | |
with open(character_dict_path, 'r', encoding='utf-8') as fr: | |
idx = 1 | |
for line in fr: | |
char = line.strip() | |
self.dict[char] = idx | |
idx += 1 | |
with open(class_path, "r") as fin: | |
lines = fin.readlines() | |
for idx, line in enumerate(lines): | |
line = line.strip("\n") | |
self.label2classid_map[line] = idx | |
self.norm = norm | |
self.directed = directed | |
def compute_relation(self, boxes): | |
"""Compute relation between every two boxes.""" | |
x1s, y1s = boxes[:, 0:1], boxes[:, 1:2] | |
x2s, y2s = boxes[:, 4:5], boxes[:, 5:6] | |
ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1) | |
dxs = (x1s[:, 0][None] - x1s) / self.norm | |
dys = (y1s[:, 0][None] - y1s) / self.norm | |
xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs | |
whs = ws / hs + np.zeros_like(xhhs) | |
relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1) | |
bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32) | |
return relations, bboxes | |
def pad_text_indices(self, text_inds): | |
"""Pad text index to same length.""" | |
max_len = 300 | |
recoder_len = max([len(text_ind) for text_ind in text_inds]) | |
padded_text_inds = -np.ones((len(text_inds), max_len), np.int32) | |
for idx, text_ind in enumerate(text_inds): | |
padded_text_inds[idx, :len(text_ind)] = np.array(text_ind) | |
return padded_text_inds, recoder_len | |
def list_to_numpy(self, ann_infos): | |
"""Convert bboxes, relations, texts and labels to ndarray.""" | |
boxes, text_inds = ann_infos['points'], ann_infos['text_inds'] | |
boxes = np.array(boxes, np.int32) | |
relations, bboxes = self.compute_relation(boxes) | |
labels = ann_infos.get('labels', None) | |
if labels is not None: | |
labels = np.array(labels, np.int32) | |
edges = ann_infos.get('edges', None) | |
if edges is not None: | |
labels = labels[:, None] | |
edges = np.array(edges) | |
edges = (edges[:, None] == edges[None, :]).astype(np.int32) | |
if self.directed: | |
edges = (edges & labels == 1).astype(np.int32) | |
np.fill_diagonal(edges, -1) | |
labels = np.concatenate([labels, edges], -1) | |
padded_text_inds, recoder_len = self.pad_text_indices(text_inds) | |
max_num = 300 | |
temp_bboxes = np.zeros([max_num, 4]) | |
h, _ = bboxes.shape | |
temp_bboxes[:h, :] = bboxes | |
temp_relations = np.zeros([max_num, max_num, 5]) | |
temp_relations[:h, :h, :] = relations | |
temp_padded_text_inds = np.zeros([max_num, max_num]) | |
temp_padded_text_inds[:h, :] = padded_text_inds | |
temp_labels = np.zeros([max_num, max_num]) | |
temp_labels[:h, :h + 1] = labels | |
tag = np.array([h, recoder_len]) | |
return dict( | |
image=ann_infos['image'], | |
points=temp_bboxes, | |
relations=temp_relations, | |
texts=temp_padded_text_inds, | |
labels=temp_labels, | |
tag=tag) | |
def convert_canonical(self, points_x, points_y): | |
assert len(points_x) == 4 | |
assert len(points_y) == 4 | |
points = [Point(points_x[i], points_y[i]) for i in range(4)] | |
polygon = Polygon([(p.x, p.y) for p in points]) | |
min_x, min_y, _, _ = polygon.bounds | |
points_to_lefttop = [ | |
LineString([points[i], Point(min_x, min_y)]) for i in range(4) | |
] | |
distances = np.array([line.length for line in points_to_lefttop]) | |
sort_dist_idx = np.argsort(distances) | |
lefttop_idx = sort_dist_idx[0] | |
if lefttop_idx == 0: | |
point_orders = [0, 1, 2, 3] | |
elif lefttop_idx == 1: | |
point_orders = [1, 2, 3, 0] | |
elif lefttop_idx == 2: | |
point_orders = [2, 3, 0, 1] | |
else: | |
point_orders = [3, 0, 1, 2] | |
sorted_points_x = [points_x[i] for i in point_orders] | |
sorted_points_y = [points_y[j] for j in point_orders] | |
return sorted_points_x, sorted_points_y | |
def sort_vertex(self, points_x, points_y): | |
assert len(points_x) == 4 | |
assert len(points_y) == 4 | |
x = np.array(points_x) | |
y = np.array(points_y) | |
center_x = np.sum(x) * 0.25 | |
center_y = np.sum(y) * 0.25 | |
x_arr = np.array(x - center_x) | |
y_arr = np.array(y - center_y) | |
angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi | |
sort_idx = np.argsort(angle) | |
sorted_points_x, sorted_points_y = [], [] | |
for i in range(4): | |
sorted_points_x.append(points_x[sort_idx[i]]) | |
sorted_points_y.append(points_y[sort_idx[i]]) | |
return self.convert_canonical(sorted_points_x, sorted_points_y) | |
def __call__(self, data): | |
import json | |
label = data['label'] | |
annotations = json.loads(label) | |
boxes, texts, text_inds, labels, edges = [], [], [], [], [] | |
for ann in annotations: | |
box = ann['points'] | |
x_list = [box[i][0] for i in range(4)] | |
y_list = [box[i][1] for i in range(4)] | |
sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list) | |
sorted_box = [] | |
for x, y in zip(sorted_x_list, sorted_y_list): | |
sorted_box.append(x) | |
sorted_box.append(y) | |
boxes.append(sorted_box) | |
text = ann['transcription'] | |
texts.append(ann['transcription']) | |
text_ind = [self.dict[c] for c in text if c in self.dict] | |
text_inds.append(text_ind) | |
if 'label' in ann.keys(): | |
labels.append(self.label2classid_map[ann['label']]) | |
elif 'key_cls' in ann.keys(): | |
labels.append(ann['key_cls']) | |
else: | |
raise ValueError( | |
"Cannot found 'key_cls' in ann.keys(), please check your training annotation." | |
) | |
edges.append(ann.get('edge', 0)) | |
ann_infos = dict( | |
image=data['image'], | |
points=boxes, | |
texts=texts, | |
text_inds=text_inds, | |
edges=edges, | |
labels=labels) | |
return self.list_to_numpy(ann_infos) | |
class AttnLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(AttnLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def add_special_char(self, dict_character): | |
self.beg_str = "sos" | |
self.end_str = "eos" | |
dict_character = [self.beg_str] + dict_character + [self.end_str] | |
return dict_character | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len: | |
return None | |
data['length'] = np.array(len(text)) | |
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len | |
- len(text) - 2) | |
data['label'] = np.array(text) | |
return data | |
def get_ignored_tokens(self): | |
beg_idx = self.get_beg_end_flag_idx("beg") | |
end_idx = self.get_beg_end_flag_idx("end") | |
return [beg_idx, end_idx] | |
def get_beg_end_flag_idx(self, beg_or_end): | |
if beg_or_end == "beg": | |
idx = np.array(self.dict[self.beg_str]) | |
elif beg_or_end == "end": | |
idx = np.array(self.dict[self.end_str]) | |
else: | |
assert False, "Unsupport type %s in get_beg_end_flag_idx" \ | |
% beg_or_end | |
return idx | |
class RFLLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(RFLLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def add_special_char(self, dict_character): | |
self.beg_str = "sos" | |
self.end_str = "eos" | |
dict_character = [self.beg_str] + dict_character + [self.end_str] | |
return dict_character | |
def encode_cnt(self, text): | |
cnt_label = [0.0] * len(self.character) | |
for char_ in text: | |
cnt_label[char_] += 1 | |
return np.array(cnt_label) | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len: | |
return None | |
cnt_label = self.encode_cnt(text) | |
data['length'] = np.array(len(text)) | |
text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len | |
- len(text) - 2) | |
if len(text) != self.max_text_len: | |
return None | |
data['label'] = np.array(text) | |
data['cnt_label'] = cnt_label | |
return data | |
def get_ignored_tokens(self): | |
beg_idx = self.get_beg_end_flag_idx("beg") | |
end_idx = self.get_beg_end_flag_idx("end") | |
return [beg_idx, end_idx] | |
def get_beg_end_flag_idx(self, beg_or_end): | |
if beg_or_end == "beg": | |
idx = np.array(self.dict[self.beg_str]) | |
elif beg_or_end == "end": | |
idx = np.array(self.dict[self.end_str]) | |
else: | |
assert False, "Unsupport type %s in get_beg_end_flag_idx" \ | |
% beg_or_end | |
return idx | |
class SEEDLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(SEEDLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def add_special_char(self, dict_character): | |
self.padding = "padding" | |
self.end_str = "eos" | |
self.unknown = "unknown" | |
dict_character = dict_character + [ | |
self.end_str, self.padding, self.unknown | |
] | |
return dict_character | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len: | |
return None | |
data['length'] = np.array(len(text)) + 1 # conclude eos | |
text = text + [len(self.character) - 3] + [len(self.character) - 2] * ( | |
self.max_text_len - len(text) - 1) | |
data['label'] = np.array(text) | |
return data | |
class SRNLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length=25, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(SRNLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def add_special_char(self, dict_character): | |
dict_character = dict_character + [self.beg_str, self.end_str] | |
return dict_character | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
char_num = len(self.character) | |
if text is None: | |
return None | |
if len(text) > self.max_text_len: | |
return None | |
data['length'] = np.array(len(text)) | |
text = text + [char_num - 1] * (self.max_text_len - len(text)) | |
data['label'] = np.array(text) | |
return data | |
def get_ignored_tokens(self): | |
beg_idx = self.get_beg_end_flag_idx("beg") | |
end_idx = self.get_beg_end_flag_idx("end") | |
return [beg_idx, end_idx] | |
def get_beg_end_flag_idx(self, beg_or_end): | |
if beg_or_end == "beg": | |
idx = np.array(self.dict[self.beg_str]) | |
elif beg_or_end == "end": | |
idx = np.array(self.dict[self.end_str]) | |
else: | |
assert False, "Unsupport type %s in get_beg_end_flag_idx" \ | |
% beg_or_end | |
return idx | |
class TableLabelEncode(AttnLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path, | |
replace_empty_cell_token=False, | |
merge_no_span_structure=False, | |
learn_empty_box=False, | |
loc_reg_num=4, | |
**kwargs): | |
self.max_text_len = max_text_length | |
self.lower = False | |
self.learn_empty_box = learn_empty_box | |
self.merge_no_span_structure = merge_no_span_structure | |
self.replace_empty_cell_token = replace_empty_cell_token | |
dict_character = [] | |
with open(character_dict_path, "rb") as fin: | |
lines = fin.readlines() | |
for line in lines: | |
line = line.decode('utf-8').strip("\n").strip("\r\n") | |
dict_character.append(line) | |
if self.merge_no_span_structure: | |
if "<td></td>" not in dict_character: | |
dict_character.append("<td></td>") | |
if "<td>" in dict_character: | |
dict_character.remove("<td>") | |
dict_character = self.add_special_char(dict_character) | |
self.dict = {} | |
for i, char in enumerate(dict_character): | |
self.dict[char] = i | |
self.idx2char = {v: k for k, v in self.dict.items()} | |
self.character = dict_character | |
self.loc_reg_num = loc_reg_num | |
self.pad_idx = self.dict[self.beg_str] | |
self.start_idx = self.dict[self.beg_str] | |
self.end_idx = self.dict[self.end_str] | |
self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>'] | |
self.empty_bbox_token_dict = { | |
"[]": '<eb></eb>', | |
"[' ']": '<eb1></eb1>', | |
"['<b>', ' ', '</b>']": '<eb2></eb2>', | |
"['\\u2028', '\\u2028']": '<eb3></eb3>', | |
"['<sup>', ' ', '</sup>']": '<eb4></eb4>', | |
"['<b>', '</b>']": '<eb5></eb5>', | |
"['<i>', ' ', '</i>']": '<eb6></eb6>', | |
"['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>', | |
"['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>', | |
"['<i>', '</i>']": '<eb9></eb9>', | |
"['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']": | |
'<eb10></eb10>', | |
} | |
def _max_text_len(self): | |
return self.max_text_len + 2 | |
def __call__(self, data): | |
cells = data['cells'] | |
structure = data['structure'] | |
if self.merge_no_span_structure: | |
structure = self._merge_no_span_structure(structure) | |
if self.replace_empty_cell_token: | |
structure = self._replace_empty_cell_token(structure, cells) | |
# remove empty token and add " " to span token | |
new_structure = [] | |
for token in structure: | |
if token != '': | |
if 'span' in token and token[0] != ' ': | |
token = ' ' + token | |
new_structure.append(token) | |
# encode structure | |
structure = self.encode(new_structure) | |
if structure is None: | |
return None | |
structure = [self.start_idx] + structure + [self.end_idx | |
] # add sos abd eos | |
structure = structure + [self.pad_idx] * (self._max_text_len - | |
len(structure)) # pad | |
structure = np.array(structure) | |
data['structure'] = structure | |
if len(structure) > self._max_text_len: | |
return None | |
# encode box | |
bboxes = np.zeros( | |
(self._max_text_len, self.loc_reg_num), dtype=np.float32) | |
bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32) | |
bbox_idx = 0 | |
for i, token in enumerate(structure): | |
if self.idx2char[token] in self.td_token: | |
if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][ | |
'tokens']) > 0: | |
bbox = cells[bbox_idx]['bbox'].copy() | |
bbox = np.array(bbox, dtype=np.float32).reshape(-1) | |
bboxes[i] = bbox | |
bbox_masks[i] = 1.0 | |
if self.learn_empty_box: | |
bbox_masks[i] = 1.0 | |
bbox_idx += 1 | |
data['bboxes'] = bboxes | |
data['bbox_masks'] = bbox_masks | |
return data | |
def _merge_no_span_structure(self, structure): | |
""" | |
This code is refer from: | |
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py | |
""" | |
new_structure = [] | |
i = 0 | |
while i < len(structure): | |
token = structure[i] | |
if token == '<td>': | |
token = '<td></td>' | |
i += 1 | |
new_structure.append(token) | |
i += 1 | |
return new_structure | |
def _replace_empty_cell_token(self, token_list, cells): | |
""" | |
This fun code is refer from: | |
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py | |
""" | |
bbox_idx = 0 | |
add_empty_bbox_token_list = [] | |
for token in token_list: | |
if token in ['<td></td>', '<td', '<td>']: | |
if 'bbox' not in cells[bbox_idx].keys(): | |
content = str(cells[bbox_idx]['tokens']) | |
token = self.empty_bbox_token_dict[content] | |
add_empty_bbox_token_list.append(token) | |
bbox_idx += 1 | |
else: | |
add_empty_bbox_token_list.append(token) | |
return add_empty_bbox_token_list | |
class TableMasterLabelEncode(TableLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path, | |
replace_empty_cell_token=False, | |
merge_no_span_structure=False, | |
learn_empty_box=False, | |
loc_reg_num=4, | |
**kwargs): | |
super(TableMasterLabelEncode, self).__init__( | |
max_text_length, character_dict_path, replace_empty_cell_token, | |
merge_no_span_structure, learn_empty_box, loc_reg_num, **kwargs) | |
self.pad_idx = self.dict[self.pad_str] | |
self.unknown_idx = self.dict[self.unknown_str] | |
def _max_text_len(self): | |
return self.max_text_len | |
def add_special_char(self, dict_character): | |
self.beg_str = '<SOS>' | |
self.end_str = '<EOS>' | |
self.unknown_str = '<UKN>' | |
self.pad_str = '<PAD>' | |
dict_character = dict_character | |
dict_character = dict_character + [ | |
self.unknown_str, self.beg_str, self.end_str, self.pad_str | |
] | |
return dict_character | |
class TableBoxEncode(object): | |
def __init__(self, in_box_format='xyxy', out_box_format='xyxy', **kwargs): | |
assert out_box_format in ['xywh', 'xyxy', 'xyxyxyxy'] | |
self.in_box_format = in_box_format | |
self.out_box_format = out_box_format | |
def __call__(self, data): | |
img_height, img_width = data['image'].shape[:2] | |
bboxes = data['bboxes'] | |
if self.in_box_format != self.out_box_format: | |
if self.out_box_format == 'xywh': | |
if self.in_box_format == 'xyxyxyxy': | |
bboxes = self.xyxyxyxy2xywh(bboxes) | |
elif self.in_box_format == 'xyxy': | |
bboxes = self.xyxy2xywh(bboxes) | |
bboxes[:, 0::2] /= img_width | |
bboxes[:, 1::2] /= img_height | |
data['bboxes'] = bboxes | |
return data | |
def xyxyxyxy2xywh(self, boxes): | |
new_bboxes = np.zeros([len(bboxes), 4]) | |
new_bboxes[:, 0] = bboxes[:, 0::2].min() # x1 | |
new_bboxes[:, 1] = bboxes[:, 1::2].min() # y1 | |
new_bboxes[:, 2] = bboxes[:, 0::2].max() - new_bboxes[:, 0] # w | |
new_bboxes[:, 3] = bboxes[:, 1::2].max() - new_bboxes[:, 1] # h | |
return new_bboxes | |
def xyxy2xywh(self, bboxes): | |
new_bboxes = np.empty_like(bboxes) | |
new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2 # x center | |
new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2 # y center | |
new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0] # width | |
new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1] # height | |
return new_bboxes | |
class SARLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(SARLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def add_special_char(self, dict_character): | |
beg_end_str = "<BOS/EOS>" | |
unknown_str = "<UKN>" | |
padding_str = "<PAD>" | |
dict_character = dict_character + [unknown_str] | |
self.unknown_idx = len(dict_character) - 1 | |
dict_character = dict_character + [beg_end_str] | |
self.start_idx = len(dict_character) - 1 | |
self.end_idx = len(dict_character) - 1 | |
dict_character = dict_character + [padding_str] | |
self.padding_idx = len(dict_character) - 1 | |
return dict_character | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len - 1: | |
return None | |
data['length'] = np.array(len(text)) | |
target = [self.start_idx] + text + [self.end_idx] | |
padded_text = [self.padding_idx for _ in range(self.max_text_len)] | |
padded_text[:len(target)] = target | |
data['label'] = np.array(padded_text) | |
return data | |
def get_ignored_tokens(self): | |
return [self.padding_idx] | |
class SATRNLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
lower=False, | |
**kwargs): | |
super(SATRNLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
self.lower = lower | |
def add_special_char(self, dict_character): | |
beg_end_str = "<BOS/EOS>" | |
unknown_str = "<UKN>" | |
padding_str = "<PAD>" | |
dict_character = dict_character + [unknown_str] | |
self.unknown_idx = len(dict_character) - 1 | |
dict_character = dict_character + [beg_end_str] | |
self.start_idx = len(dict_character) - 1 | |
self.end_idx = len(dict_character) - 1 | |
dict_character = dict_character + [padding_str] | |
self.padding_idx = len(dict_character) - 1 | |
return dict_character | |
def encode(self, text): | |
if self.lower: | |
text = text.lower() | |
text_list = [] | |
for char in text: | |
text_list.append(self.dict.get(char, self.unknown_idx)) | |
if len(text_list) == 0: | |
return None | |
return text_list | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
data['length'] = np.array(len(text)) | |
target = [self.start_idx] + text + [self.end_idx] | |
padded_text = [self.padding_idx for _ in range(self.max_text_len)] | |
if len(target) > self.max_text_len: | |
padded_text = target[:self.max_text_len] | |
else: | |
padded_text[:len(target)] = target | |
data['label'] = np.array(padded_text) | |
return data | |
def get_ignored_tokens(self): | |
return [self.padding_idx] | |
class PRENLabelEncode(BaseRecLabelEncode): | |
def __init__(self, | |
max_text_length, | |
character_dict_path, | |
use_space_char=False, | |
**kwargs): | |
super(PRENLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def add_special_char(self, dict_character): | |
padding_str = '<PAD>' # 0 | |
end_str = '<EOS>' # 1 | |
unknown_str = '<UNK>' # 2 | |
dict_character = [padding_str, end_str, unknown_str] + dict_character | |
self.padding_idx = 0 | |
self.end_idx = 1 | |
self.unknown_idx = 2 | |
return dict_character | |
def encode(self, text): | |
if len(text) == 0 or len(text) >= self.max_text_len: | |
return None | |
if self.lower: | |
text = text.lower() | |
text_list = [] | |
for char in text: | |
if char not in self.dict: | |
text_list.append(self.unknown_idx) | |
else: | |
text_list.append(self.dict[char]) | |
text_list.append(self.end_idx) | |
if len(text_list) < self.max_text_len: | |
text_list += [self.padding_idx] * ( | |
self.max_text_len - len(text_list)) | |
return text_list | |
def __call__(self, data): | |
text = data['label'] | |
encoded_text = self.encode(text) | |
if encoded_text is None: | |
return None | |
data['label'] = np.array(encoded_text) | |
return data | |
class VQATokenLabelEncode(object): | |
""" | |
Label encode for NLP VQA methods | |
""" | |
def __init__(self, | |
class_path, | |
contains_re=False, | |
add_special_ids=False, | |
algorithm='LayoutXLM', | |
use_textline_bbox_info=True, | |
order_method=None, | |
infer_mode=False, | |
ocr_engine=None, | |
**kwargs): | |
super(VQATokenLabelEncode, self).__init__() | |
from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer | |
from ppocr.utils.utility import load_vqa_bio_label_maps | |
tokenizer_dict = { | |
'LayoutXLM': { | |
'class': LayoutXLMTokenizer, | |
'pretrained_model': 'layoutxlm-base-uncased' | |
}, | |
'LayoutLM': { | |
'class': LayoutLMTokenizer, | |
'pretrained_model': 'layoutlm-base-uncased' | |
}, | |
'LayoutLMv2': { | |
'class': LayoutLMv2Tokenizer, | |
'pretrained_model': 'layoutlmv2-base-uncased' | |
} | |
} | |
self.contains_re = contains_re | |
tokenizer_config = tokenizer_dict[algorithm] | |
self.tokenizer = tokenizer_config['class'].from_pretrained( | |
tokenizer_config['pretrained_model']) | |
self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path) | |
self.add_special_ids = add_special_ids | |
self.infer_mode = infer_mode | |
self.ocr_engine = ocr_engine | |
self.use_textline_bbox_info = use_textline_bbox_info | |
self.order_method = order_method | |
assert self.order_method in [None, "tb-yx"] | |
def split_bbox(self, bbox, text, tokenizer): | |
words = text.split() | |
token_bboxes = [] | |
curr_word_idx = 0 | |
x1, y1, x2, y2 = bbox | |
unit_w = (x2 - x1) / len(text) | |
for idx, word in enumerate(words): | |
curr_w = len(word) * unit_w | |
word_bbox = [x1, y1, x1 + curr_w, y2] | |
token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word))) | |
x1 += (len(word) + 1) * unit_w | |
return token_bboxes | |
def filter_empty_contents(self, ocr_info): | |
""" | |
find out the empty texts and remove the links | |
""" | |
new_ocr_info = [] | |
empty_index = [] | |
for idx, info in enumerate(ocr_info): | |
if len(info["transcription"]) > 0: | |
new_ocr_info.append(copy.deepcopy(info)) | |
else: | |
empty_index.append(info["id"]) | |
for idx, info in enumerate(new_ocr_info): | |
new_link = [] | |
for link in info["linking"]: | |
if link[0] in empty_index or link[1] in empty_index: | |
continue | |
new_link.append(link) | |
new_ocr_info[idx]["linking"] = new_link | |
return new_ocr_info | |
def __call__(self, data): | |
# load bbox and label info | |
ocr_info = self._load_ocr_info(data) | |
for idx in range(len(ocr_info)): | |
if "bbox" not in ocr_info[idx]: | |
ocr_info[idx]["bbox"] = self.trans_poly_to_bbox(ocr_info[idx][ | |
"points"]) | |
if self.order_method == "tb-yx": | |
ocr_info = order_by_tbyx(ocr_info) | |
# for re | |
train_re = self.contains_re and not self.infer_mode | |
if train_re: | |
ocr_info = self.filter_empty_contents(ocr_info) | |
height, width, _ = data['image'].shape | |
words_list = [] | |
bbox_list = [] | |
input_ids_list = [] | |
token_type_ids_list = [] | |
segment_offset_id = [] | |
gt_label_list = [] | |
entities = [] | |
if train_re: | |
relations = [] | |
id2label = {} | |
entity_id_to_index_map = {} | |
empty_entity = set() | |
data['ocr_info'] = copy.deepcopy(ocr_info) | |
for info in ocr_info: | |
text = info["transcription"] | |
if len(text) <= 0: | |
continue | |
if train_re: | |
# for re | |
if len(text) == 0: | |
empty_entity.add(info["id"]) | |
continue | |
id2label[info["id"]] = info["label"] | |
relations.extend([tuple(sorted(l)) for l in info["linking"]]) | |
# smooth_box | |
info["bbox"] = self.trans_poly_to_bbox(info["points"]) | |
encode_res = self.tokenizer.encode( | |
text, | |
pad_to_max_seq_len=False, | |
return_attention_mask=True, | |
return_token_type_ids=True) | |
if not self.add_special_ids: | |
# TODO: use tok.all_special_ids to remove | |
encode_res["input_ids"] = encode_res["input_ids"][1:-1] | |
encode_res["token_type_ids"] = encode_res["token_type_ids"][1: | |
-1] | |
encode_res["attention_mask"] = encode_res["attention_mask"][1: | |
-1] | |
if self.use_textline_bbox_info: | |
bbox = [info["bbox"]] * len(encode_res["input_ids"]) | |
else: | |
bbox = self.split_bbox(info["bbox"], info["transcription"], | |
self.tokenizer) | |
if len(bbox) <= 0: | |
continue | |
bbox = self._smooth_box(bbox, height, width) | |
if self.add_special_ids: | |
bbox.insert(0, [0, 0, 0, 0]) | |
bbox.append([0, 0, 0, 0]) | |
# parse label | |
if not self.infer_mode: | |
label = info['label'] | |
gt_label = self._parse_label(label, encode_res) | |
# construct entities for re | |
if train_re: | |
if gt_label[0] != self.label2id_map["O"]: | |
entity_id_to_index_map[info["id"]] = len(entities) | |
label = label.upper() | |
entities.append({ | |
"start": len(input_ids_list), | |
"end": | |
len(input_ids_list) + len(encode_res["input_ids"]), | |
"label": label.upper(), | |
}) | |
else: | |
entities.append({ | |
"start": len(input_ids_list), | |
"end": len(input_ids_list) + len(encode_res["input_ids"]), | |
"label": 'O', | |
}) | |
input_ids_list.extend(encode_res["input_ids"]) | |
token_type_ids_list.extend(encode_res["token_type_ids"]) | |
bbox_list.extend(bbox) | |
words_list.append(text) | |
segment_offset_id.append(len(input_ids_list)) | |
if not self.infer_mode: | |
gt_label_list.extend(gt_label) | |
data['input_ids'] = input_ids_list | |
data['token_type_ids'] = token_type_ids_list | |
data['bbox'] = bbox_list | |
data['attention_mask'] = [1] * len(input_ids_list) | |
data['labels'] = gt_label_list | |
data['segment_offset_id'] = segment_offset_id | |
data['tokenizer_params'] = dict( | |
padding_side=self.tokenizer.padding_side, | |
pad_token_type_id=self.tokenizer.pad_token_type_id, | |
pad_token_id=self.tokenizer.pad_token_id) | |
data['entities'] = entities | |
if train_re: | |
data['relations'] = relations | |
data['id2label'] = id2label | |
data['empty_entity'] = empty_entity | |
data['entity_id_to_index_map'] = entity_id_to_index_map | |
return data | |
def trans_poly_to_bbox(self, poly): | |
x1 = int(np.min([p[0] for p in poly])) | |
x2 = int(np.max([p[0] for p in poly])) | |
y1 = int(np.min([p[1] for p in poly])) | |
y2 = int(np.max([p[1] for p in poly])) | |
return [x1, y1, x2, y2] | |
def _load_ocr_info(self, data): | |
if self.infer_mode: | |
ocr_result = self.ocr_engine.ocr(data['image'], cls=False)[0] | |
ocr_info = [] | |
for res in ocr_result: | |
ocr_info.append({ | |
"transcription": res[1][0], | |
"bbox": self.trans_poly_to_bbox(res[0]), | |
"points": res[0], | |
}) | |
return ocr_info | |
else: | |
info = data['label'] | |
# read text info | |
info_dict = json.loads(info) | |
return info_dict | |
def _smooth_box(self, bboxes, height, width): | |
bboxes = np.array(bboxes) | |
bboxes[:, 0] = bboxes[:, 0] * 1000 / width | |
bboxes[:, 2] = bboxes[:, 2] * 1000 / width | |
bboxes[:, 1] = bboxes[:, 1] * 1000 / height | |
bboxes[:, 3] = bboxes[:, 3] * 1000 / height | |
bboxes = bboxes.astype("int64").tolist() | |
return bboxes | |
def _parse_label(self, label, encode_res): | |
gt_label = [] | |
if label.lower() in ["other", "others", "ignore"]: | |
gt_label.extend([0] * len(encode_res["input_ids"])) | |
else: | |
gt_label.append(self.label2id_map[("b-" + label).upper()]) | |
gt_label.extend([self.label2id_map[("i-" + label).upper()]] * | |
(len(encode_res["input_ids"]) - 1)) | |
return gt_label | |
class MultiLabelEncode(BaseRecLabelEncode): | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
gtc_encode=None, | |
**kwargs): | |
super(MultiLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path, | |
use_space_char, **kwargs) | |
self.gtc_encode_type = gtc_encode | |
if gtc_encode is None: | |
self.gtc_encode = SARLabelEncode( | |
max_text_length, character_dict_path, use_space_char, **kwargs) | |
else: | |
self.gtc_encode = eval(gtc_encode)( | |
max_text_length, character_dict_path, use_space_char, **kwargs) | |
def __call__(self, data): | |
data_ctc = copy.deepcopy(data) | |
data_gtc = copy.deepcopy(data) | |
data_out = dict() | |
data_out['img_path'] = data.get('img_path', None) | |
data_out['image'] = data['image'] | |
ctc = self.ctc_encode.__call__(data_ctc) | |
gtc = self.gtc_encode.__call__(data_gtc) | |
if ctc is None or gtc is None: | |
return None | |
data_out['label_ctc'] = ctc['label'] | |
if self.gtc_encode_type is not None: | |
data_out['label_gtc'] = gtc['label'] | |
else: | |
data_out['label_sar'] = gtc['label'] | |
data_out['length'] = ctc['length'] | |
return data_out | |
class NRTRLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(NRTRLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len - 1: | |
return None | |
data['length'] = np.array(len(text)) | |
text.insert(0, 2) | |
text.append(3) | |
text = text + [0] * (self.max_text_len - len(text)) | |
data['label'] = np.array(text) | |
return data | |
def add_special_char(self, dict_character): | |
dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character | |
return dict_character | |
class ViTSTRLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
ignore_index=0, | |
**kwargs): | |
super(ViTSTRLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
self.ignore_index = ignore_index | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len: | |
return None | |
data['length'] = np.array(len(text)) | |
text.insert(0, self.ignore_index) | |
text.append(1) | |
text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text)) | |
data['label'] = np.array(text) | |
return data | |
def add_special_char(self, dict_character): | |
dict_character = ['<s>', '</s>'] + dict_character | |
return dict_character | |
class ABINetLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
ignore_index=100, | |
**kwargs): | |
super(ABINetLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
self.ignore_index = ignore_index | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) >= self.max_text_len: | |
return None | |
data['length'] = np.array(len(text)) | |
text.append(0) | |
text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text)) | |
data['label'] = np.array(text) | |
return data | |
def add_special_char(self, dict_character): | |
dict_character = ['</s>'] + dict_character | |
return dict_character | |
class SRLabelEncode(BaseRecLabelEncode): | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(SRLabelEncode, self).__init__(max_text_length, | |
character_dict_path, use_space_char) | |
self.dic = {} | |
with open(character_dict_path, 'r') as fin: | |
for line in fin.readlines(): | |
line = line.strip() | |
character, sequence = line.split() | |
self.dic[character] = sequence | |
english_stroke_alphabet = '0123456789' | |
self.english_stroke_dict = {} | |
for index in range(len(english_stroke_alphabet)): | |
self.english_stroke_dict[english_stroke_alphabet[index]] = index | |
def encode(self, label): | |
stroke_sequence = '' | |
for character in label: | |
if character not in self.dic: | |
continue | |
else: | |
stroke_sequence += self.dic[character] | |
stroke_sequence += '0' | |
label = stroke_sequence | |
length = len(label) | |
input_tensor = np.zeros(self.max_text_len).astype("int64") | |
for j in range(length - 1): | |
input_tensor[j + 1] = self.english_stroke_dict[label[j]] | |
return length, input_tensor | |
def __call__(self, data): | |
text = data['label'] | |
length, input_tensor = self.encode(text) | |
data["length"] = length | |
data["input_tensor"] = input_tensor | |
if text is None: | |
return None | |
return data | |
class SPINLabelEncode(AttnLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
lower=True, | |
**kwargs): | |
super(SPINLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char) | |
self.lower = lower | |
def add_special_char(self, dict_character): | |
self.beg_str = "sos" | |
self.end_str = "eos" | |
dict_character = [self.beg_str] + [self.end_str] + dict_character | |
return dict_character | |
def __call__(self, data): | |
text = data['label'] | |
text = self.encode(text) | |
if text is None: | |
return None | |
if len(text) > self.max_text_len: | |
return None | |
data['length'] = np.array(len(text)) | |
target = [0] + text + [1] | |
padded_text = [0 for _ in range(self.max_text_len + 2)] | |
padded_text[:len(target)] = target | |
data['label'] = np.array(padded_text) | |
return data | |
class VLLabelEncode(BaseRecLabelEncode): | |
""" Convert between text-label and text-index """ | |
def __init__(self, | |
max_text_length, | |
character_dict_path=None, | |
use_space_char=False, | |
**kwargs): | |
super(VLLabelEncode, self).__init__(max_text_length, | |
character_dict_path, use_space_char) | |
self.dict = {} | |
for i, char in enumerate(self.character): | |
self.dict[char] = i | |
def __call__(self, data): | |
text = data['label'] # original string | |
# generate occluded text | |
len_str = len(text) | |
if len_str <= 0: | |
return None | |
change_num = 1 | |
order = list(range(len_str)) | |
change_id = sample(order, change_num)[0] | |
label_sub = text[change_id] | |
if change_id == (len_str - 1): | |
label_res = text[:change_id] | |
elif change_id == 0: | |
label_res = text[1:] | |
else: | |
label_res = text[:change_id] + text[change_id + 1:] | |
data['label_res'] = label_res # remaining string | |
data['label_sub'] = label_sub # occluded character | |
data['label_id'] = change_id # character index | |
# encode label | |
text = self.encode(text) | |
if text is None: | |
return None | |
text = [i + 1 for i in text] | |
data['length'] = np.array(len(text)) | |
text = text + [0] * (self.max_text_len - len(text)) | |
data['label'] = np.array(text) | |
label_res = self.encode(label_res) | |
label_sub = self.encode(label_sub) | |
if label_res is None: | |
label_res = [] | |
else: | |
label_res = [i + 1 for i in label_res] | |
if label_sub is None: | |
label_sub = [] | |
else: | |
label_sub = [i + 1 for i in label_sub] | |
data['length_res'] = np.array(len(label_res)) | |
data['length_sub'] = np.array(len(label_sub)) | |
label_res = label_res + [0] * (self.max_text_len - len(label_res)) | |
label_sub = label_sub + [0] * (self.max_text_len - len(label_sub)) | |
data['label_res'] = np.array(label_res) | |
data['label_sub'] = np.array(label_sub) | |
return data | |
class CTLabelEncode(object): | |
def __init__(self, **kwargs): | |
pass | |
def __call__(self, data): | |
label = data['label'] | |
label = json.loads(label) | |
nBox = len(label) | |
boxes, txts = [], [] | |
for bno in range(0, nBox): | |
box = label[bno]['points'] | |
box = np.array(box) | |
boxes.append(box) | |
txt = label[bno]['transcription'] | |
txts.append(txt) | |
if len(boxes) == 0: | |
return None | |
data['polys'] = boxes | |
data['texts'] = txts | |
return data | |
class CANLabelEncode(BaseRecLabelEncode): | |
def __init__(self, | |
character_dict_path, | |
max_text_length=100, | |
use_space_char=False, | |
lower=True, | |
**kwargs): | |
super(CANLabelEncode, self).__init__( | |
max_text_length, character_dict_path, use_space_char, lower) | |
def encode(self, text_seq): | |
text_seq_encoded = [] | |
for text in text_seq: | |
if text not in self.character: | |
continue | |
text_seq_encoded.append(self.dict.get(text)) | |
if len(text_seq_encoded) == 0: | |
return None | |
return text_seq_encoded | |
def __call__(self, data): | |
label = data['label'] | |
if isinstance(label, str): | |
label = label.strip().split() | |
label.append(self.end_str) | |
data['label'] = self.encode(label) | |
return data | |