Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from __future__ import unicode_literals | |
from PIL import Image, ImageEnhance, ImageOps | |
import numpy as np | |
import random | |
import six | |
class RawRandAugment(object): | |
def __init__(self, | |
num_layers=2, | |
magnitude=5, | |
fillcolor=(128, 128, 128), | |
**kwargs): | |
self.num_layers = num_layers | |
self.magnitude = magnitude | |
self.max_level = 10 | |
abso_level = self.magnitude / self.max_level | |
self.level_map = { | |
"shearX": 0.3 * abso_level, | |
"shearY": 0.3 * abso_level, | |
"translateX": 150.0 / 331 * abso_level, | |
"translateY": 150.0 / 331 * abso_level, | |
"rotate": 30 * abso_level, | |
"color": 0.9 * abso_level, | |
"posterize": int(4.0 * abso_level), | |
"solarize": 256.0 * abso_level, | |
"contrast": 0.9 * abso_level, | |
"sharpness": 0.9 * abso_level, | |
"brightness": 0.9 * abso_level, | |
"autocontrast": 0, | |
"equalize": 0, | |
"invert": 0 | |
} | |
# from https://stackoverflow.com/questions/5252170/ | |
# specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand | |
def rotate_with_fill(img, magnitude): | |
rot = img.convert("RGBA").rotate(magnitude) | |
return Image.composite(rot, | |
Image.new("RGBA", rot.size, (128, ) * 4), | |
rot).convert(img.mode) | |
rnd_ch_op = random.choice | |
self.func = { | |
"shearX": lambda img, magnitude: img.transform( | |
img.size, | |
Image.AFFINE, | |
(1, magnitude * rnd_ch_op([-1, 1]), 0, 0, 1, 0), | |
Image.BICUBIC, | |
fillcolor=fillcolor), | |
"shearY": lambda img, magnitude: img.transform( | |
img.size, | |
Image.AFFINE, | |
(1, 0, 0, magnitude * rnd_ch_op([-1, 1]), 1, 0), | |
Image.BICUBIC, | |
fillcolor=fillcolor), | |
"translateX": lambda img, magnitude: img.transform( | |
img.size, | |
Image.AFFINE, | |
(1, 0, magnitude * img.size[0] * rnd_ch_op([-1, 1]), 0, 1, 0), | |
fillcolor=fillcolor), | |
"translateY": lambda img, magnitude: img.transform( | |
img.size, | |
Image.AFFINE, | |
(1, 0, 0, 0, 1, magnitude * img.size[1] * rnd_ch_op([-1, 1])), | |
fillcolor=fillcolor), | |
"rotate": lambda img, magnitude: rotate_with_fill(img, magnitude), | |
"color": lambda img, magnitude: ImageEnhance.Color(img).enhance( | |
1 + magnitude * rnd_ch_op([-1, 1])), | |
"posterize": lambda img, magnitude: | |
ImageOps.posterize(img, magnitude), | |
"solarize": lambda img, magnitude: | |
ImageOps.solarize(img, magnitude), | |
"contrast": lambda img, magnitude: | |
ImageEnhance.Contrast(img).enhance( | |
1 + magnitude * rnd_ch_op([-1, 1])), | |
"sharpness": lambda img, magnitude: | |
ImageEnhance.Sharpness(img).enhance( | |
1 + magnitude * rnd_ch_op([-1, 1])), | |
"brightness": lambda img, magnitude: | |
ImageEnhance.Brightness(img).enhance( | |
1 + magnitude * rnd_ch_op([-1, 1])), | |
"autocontrast": lambda img, magnitude: | |
ImageOps.autocontrast(img), | |
"equalize": lambda img, magnitude: ImageOps.equalize(img), | |
"invert": lambda img, magnitude: ImageOps.invert(img) | |
} | |
def __call__(self, img): | |
avaiable_op_names = list(self.level_map.keys()) | |
for layer_num in range(self.num_layers): | |
op_name = np.random.choice(avaiable_op_names) | |
img = self.func[op_name](img, self.level_map[op_name]) | |
return img | |
class RandAugment(RawRandAugment): | |
""" RandAugment wrapper to auto fit different img types """ | |
def __init__(self, prob=0.5, *args, **kwargs): | |
self.prob = prob | |
if six.PY2: | |
super(RandAugment, self).__init__(*args, **kwargs) | |
else: | |
super().__init__(*args, **kwargs) | |
def __call__(self, data): | |
if np.random.rand() > self.prob: | |
return data | |
img = data['image'] | |
if not isinstance(img, Image.Image): | |
img = np.ascontiguousarray(img) | |
img = Image.fromarray(img) | |
if six.PY2: | |
img = super(RandAugment, self).__call__(img) | |
else: | |
img = super().__call__(img) | |
if isinstance(img, Image.Image): | |
img = np.asarray(img) | |
data['image'] = img | |
return data | |