Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import cv2 | |
import numpy as np | |
import random | |
import copy | |
from PIL import Image | |
from .text_image_aug import tia_perspective, tia_stretch, tia_distort | |
from .abinet_aug import CVGeometry, CVDeterioration, CVColorJitter, SVTRGeometry, SVTRDeterioration | |
from paddle.vision.transforms import Compose | |
class RecAug(object): | |
def __init__(self, | |
tia_prob=0.4, | |
crop_prob=0.4, | |
reverse_prob=0.4, | |
noise_prob=0.4, | |
jitter_prob=0.4, | |
blur_prob=0.4, | |
hsv_aug_prob=0.4, | |
**kwargs): | |
self.tia_prob = tia_prob | |
self.bda = BaseDataAugmentation(crop_prob, reverse_prob, noise_prob, | |
jitter_prob, blur_prob, hsv_aug_prob) | |
def __call__(self, data): | |
img = data['image'] | |
h, w, _ = img.shape | |
# tia | |
if random.random() <= self.tia_prob: | |
if h >= 20 and w >= 20: | |
img = tia_distort(img, random.randint(3, 6)) | |
img = tia_stretch(img, random.randint(3, 6)) | |
img = tia_perspective(img) | |
# bda | |
data['image'] = img | |
data = self.bda(data) | |
return data | |
class BaseDataAugmentation(object): | |
def __init__(self, | |
crop_prob=0.4, | |
reverse_prob=0.4, | |
noise_prob=0.4, | |
jitter_prob=0.4, | |
blur_prob=0.4, | |
hsv_aug_prob=0.4, | |
**kwargs): | |
self.crop_prob = crop_prob | |
self.reverse_prob = reverse_prob | |
self.noise_prob = noise_prob | |
self.jitter_prob = jitter_prob | |
self.blur_prob = blur_prob | |
self.hsv_aug_prob = hsv_aug_prob | |
# for GaussianBlur | |
self.fil = cv2.getGaussianKernel(ksize=5, sigma=1, ktype=cv2.CV_32F) | |
def __call__(self, data): | |
img = data['image'] | |
h, w, _ = img.shape | |
if random.random() <= self.crop_prob and h >= 20 and w >= 20: | |
img = get_crop(img) | |
if random.random() <= self.blur_prob: | |
# GaussianBlur | |
img = cv2.sepFilter2D(img, -1, self.fil, self.fil) | |
if random.random() <= self.hsv_aug_prob: | |
img = hsv_aug(img) | |
if random.random() <= self.jitter_prob: | |
img = jitter(img) | |
if random.random() <= self.noise_prob: | |
img = add_gasuss_noise(img) | |
if random.random() <= self.reverse_prob: | |
img = 255 - img | |
data['image'] = img | |
return data | |
class ABINetRecAug(object): | |
def __init__(self, | |
geometry_p=0.5, | |
deterioration_p=0.25, | |
colorjitter_p=0.25, | |
**kwargs): | |
self.transforms = Compose([ | |
CVGeometry( | |
degrees=45, | |
translate=(0.0, 0.0), | |
scale=(0.5, 2.), | |
shear=(45, 15), | |
distortion=0.5, | |
p=geometry_p), CVDeterioration( | |
var=20, degrees=6, factor=4, p=deterioration_p), | |
CVColorJitter( | |
brightness=0.5, | |
contrast=0.5, | |
saturation=0.5, | |
hue=0.1, | |
p=colorjitter_p) | |
]) | |
def __call__(self, data): | |
img = data['image'] | |
img = self.transforms(img) | |
data['image'] = img | |
return data | |
class RecConAug(object): | |
def __init__(self, | |
prob=0.5, | |
image_shape=(32, 320, 3), | |
max_text_length=25, | |
ext_data_num=1, | |
**kwargs): | |
self.ext_data_num = ext_data_num | |
self.prob = prob | |
self.max_text_length = max_text_length | |
self.image_shape = image_shape | |
self.max_wh_ratio = self.image_shape[1] / self.image_shape[0] | |
def merge_ext_data(self, data, ext_data): | |
ori_w = round(data['image'].shape[1] / data['image'].shape[0] * | |
self.image_shape[0]) | |
ext_w = round(ext_data['image'].shape[1] / ext_data['image'].shape[0] * | |
self.image_shape[0]) | |
data['image'] = cv2.resize(data['image'], (ori_w, self.image_shape[0])) | |
ext_data['image'] = cv2.resize(ext_data['image'], | |
(ext_w, self.image_shape[0])) | |
data['image'] = np.concatenate( | |
[data['image'], ext_data['image']], axis=1) | |
data["label"] += ext_data["label"] | |
return data | |
def __call__(self, data): | |
rnd_num = random.random() | |
if rnd_num > self.prob: | |
return data | |
for idx, ext_data in enumerate(data["ext_data"]): | |
if len(data["label"]) + len(ext_data[ | |
"label"]) > self.max_text_length: | |
break | |
concat_ratio = data['image'].shape[1] / data['image'].shape[ | |
0] + ext_data['image'].shape[1] / ext_data['image'].shape[0] | |
if concat_ratio > self.max_wh_ratio: | |
break | |
data = self.merge_ext_data(data, ext_data) | |
data.pop("ext_data") | |
return data | |
class SVTRRecAug(object): | |
def __init__(self, | |
aug_type=0, | |
geometry_p=0.5, | |
deterioration_p=0.25, | |
colorjitter_p=0.25, | |
**kwargs): | |
self.transforms = Compose([ | |
SVTRGeometry( | |
aug_type=aug_type, | |
degrees=45, | |
translate=(0.0, 0.0), | |
scale=(0.5, 2.), | |
shear=(45, 15), | |
distortion=0.5, | |
p=geometry_p), SVTRDeterioration( | |
var=20, degrees=6, factor=4, p=deterioration_p), | |
CVColorJitter( | |
brightness=0.5, | |
contrast=0.5, | |
saturation=0.5, | |
hue=0.1, | |
p=colorjitter_p) | |
]) | |
def __call__(self, data): | |
img = data['image'] | |
img = self.transforms(img) | |
data['image'] = img | |
return data | |
class ClsResizeImg(object): | |
def __init__(self, image_shape, **kwargs): | |
self.image_shape = image_shape | |
def __call__(self, data): | |
img = data['image'] | |
norm_img, _ = resize_norm_img(img, self.image_shape) | |
data['image'] = norm_img | |
return data | |
class RecResizeImg(object): | |
def __init__(self, | |
image_shape, | |
infer_mode=False, | |
eval_mode=False, | |
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt', | |
padding=True, | |
**kwargs): | |
self.image_shape = image_shape | |
self.infer_mode = infer_mode | |
self.eval_mode = eval_mode | |
self.character_dict_path = character_dict_path | |
self.padding = padding | |
def __call__(self, data): | |
img = data['image'] | |
if self.eval_mode or (self.infer_mode and | |
self.character_dict_path is not None): | |
norm_img, valid_ratio = resize_norm_img_chinese(img, | |
self.image_shape) | |
else: | |
norm_img, valid_ratio = resize_norm_img(img, self.image_shape, | |
self.padding) | |
data['image'] = norm_img | |
data['valid_ratio'] = valid_ratio | |
return data | |
class VLRecResizeImg(object): | |
def __init__(self, | |
image_shape, | |
infer_mode=False, | |
character_dict_path='./ppocr/utils/ppocr_keys_v1.txt', | |
padding=True, | |
**kwargs): | |
self.image_shape = image_shape | |
self.infer_mode = infer_mode | |
self.character_dict_path = character_dict_path | |
self.padding = padding | |
def __call__(self, data): | |
img = data['image'] | |
imgC, imgH, imgW = self.image_shape | |
resized_image = cv2.resize( | |
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | |
resized_w = imgW | |
resized_image = resized_image.astype('float32') | |
if self.image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
norm_img = resized_image[np.newaxis, :] | |
else: | |
norm_img = resized_image.transpose((2, 0, 1)) / 255 | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
data['image'] = norm_img | |
data['valid_ratio'] = valid_ratio | |
return data | |
class RFLRecResizeImg(object): | |
def __init__(self, image_shape, padding=True, interpolation=1, **kwargs): | |
self.image_shape = image_shape | |
self.padding = padding | |
self.interpolation = interpolation | |
if self.interpolation == 0: | |
self.interpolation = cv2.INTER_NEAREST | |
elif self.interpolation == 1: | |
self.interpolation = cv2.INTER_LINEAR | |
elif self.interpolation == 2: | |
self.interpolation = cv2.INTER_CUBIC | |
elif self.interpolation == 3: | |
self.interpolation = cv2.INTER_AREA | |
else: | |
raise Exception("Unsupported interpolation type !!!") | |
def __call__(self, data): | |
img = data['image'] | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
norm_img, valid_ratio = resize_norm_img( | |
img, self.image_shape, self.padding, self.interpolation) | |
data['image'] = norm_img | |
data['valid_ratio'] = valid_ratio | |
return data | |
class SRNRecResizeImg(object): | |
def __init__(self, image_shape, num_heads, max_text_length, **kwargs): | |
self.image_shape = image_shape | |
self.num_heads = num_heads | |
self.max_text_length = max_text_length | |
def __call__(self, data): | |
img = data['image'] | |
norm_img = resize_norm_img_srn(img, self.image_shape) | |
data['image'] = norm_img | |
[encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ | |
srn_other_inputs(self.image_shape, self.num_heads, self.max_text_length) | |
data['encoder_word_pos'] = encoder_word_pos | |
data['gsrm_word_pos'] = gsrm_word_pos | |
data['gsrm_slf_attn_bias1'] = gsrm_slf_attn_bias1 | |
data['gsrm_slf_attn_bias2'] = gsrm_slf_attn_bias2 | |
return data | |
class SARRecResizeImg(object): | |
def __init__(self, image_shape, width_downsample_ratio=0.25, **kwargs): | |
self.image_shape = image_shape | |
self.width_downsample_ratio = width_downsample_ratio | |
def __call__(self, data): | |
img = data['image'] | |
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( | |
img, self.image_shape, self.width_downsample_ratio) | |
data['image'] = norm_img | |
data['resized_shape'] = resize_shape | |
data['pad_shape'] = pad_shape | |
data['valid_ratio'] = valid_ratio | |
return data | |
class PRENResizeImg(object): | |
def __init__(self, image_shape, **kwargs): | |
""" | |
Accroding to original paper's realization, it's a hard resize method here. | |
So maybe you should optimize it to fit for your task better. | |
""" | |
self.dst_h, self.dst_w = image_shape | |
def __call__(self, data): | |
img = data['image'] | |
resized_img = cv2.resize( | |
img, (self.dst_w, self.dst_h), interpolation=cv2.INTER_LINEAR) | |
resized_img = resized_img.transpose((2, 0, 1)) / 255 | |
resized_img -= 0.5 | |
resized_img /= 0.5 | |
data['image'] = resized_img.astype(np.float32) | |
return data | |
class SPINRecResizeImg(object): | |
def __init__(self, | |
image_shape, | |
interpolation=2, | |
mean=(127.5, 127.5, 127.5), | |
std=(127.5, 127.5, 127.5), | |
**kwargs): | |
self.image_shape = image_shape | |
self.mean = np.array(mean, dtype=np.float32) | |
self.std = np.array(std, dtype=np.float32) | |
self.interpolation = interpolation | |
def __call__(self, data): | |
img = data['image'] | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# different interpolation type corresponding the OpenCV | |
if self.interpolation == 0: | |
interpolation = cv2.INTER_NEAREST | |
elif self.interpolation == 1: | |
interpolation = cv2.INTER_LINEAR | |
elif self.interpolation == 2: | |
interpolation = cv2.INTER_CUBIC | |
elif self.interpolation == 3: | |
interpolation = cv2.INTER_AREA | |
else: | |
raise Exception("Unsupported interpolation type !!!") | |
# Deal with the image error during image loading | |
if img is None: | |
return None | |
img = cv2.resize(img, tuple(self.image_shape), interpolation) | |
img = np.array(img, np.float32) | |
img = np.expand_dims(img, -1) | |
img = img.transpose((2, 0, 1)) | |
# normalize the image | |
img = img.copy().astype(np.float32) | |
mean = np.float64(self.mean.reshape(1, -1)) | |
stdinv = 1 / np.float64(self.std.reshape(1, -1)) | |
img -= mean | |
img *= stdinv | |
data['image'] = img | |
return data | |
class GrayRecResizeImg(object): | |
def __init__(self, | |
image_shape, | |
resize_type, | |
inter_type='Image.LANCZOS', | |
scale=True, | |
padding=False, | |
**kwargs): | |
self.image_shape = image_shape | |
self.resize_type = resize_type | |
self.padding = padding | |
self.inter_type = eval(inter_type) | |
self.scale = scale | |
def __call__(self, data): | |
img = data['image'] | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
image_shape = self.image_shape | |
if self.padding: | |
imgC, imgH, imgW = image_shape | |
# todo: change to 0 and modified image shape | |
h = img.shape[0] | |
w = img.shape[1] | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
norm_img = np.expand_dims(resized_image, -1) | |
norm_img = norm_img.transpose((2, 0, 1)) | |
resized_image = norm_img.astype(np.float32) / 128. - 1. | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
data['image'] = padding_im | |
return data | |
if self.resize_type == 'PIL': | |
image_pil = Image.fromarray(np.uint8(img)) | |
img = image_pil.resize(self.image_shape, self.inter_type) | |
img = np.array(img) | |
if self.resize_type == 'OpenCV': | |
img = cv2.resize(img, self.image_shape) | |
norm_img = np.expand_dims(img, -1) | |
norm_img = norm_img.transpose((2, 0, 1)) | |
if self.scale: | |
data['image'] = norm_img.astype(np.float32) / 128. - 1. | |
else: | |
data['image'] = norm_img.astype(np.float32) / 255. | |
return data | |
class ABINetRecResizeImg(object): | |
def __init__(self, image_shape, **kwargs): | |
self.image_shape = image_shape | |
def __call__(self, data): | |
img = data['image'] | |
norm_img, valid_ratio = resize_norm_img_abinet(img, self.image_shape) | |
data['image'] = norm_img | |
data['valid_ratio'] = valid_ratio | |
return data | |
class SVTRRecResizeImg(object): | |
def __init__(self, image_shape, padding=True, **kwargs): | |
self.image_shape = image_shape | |
self.padding = padding | |
def __call__(self, data): | |
img = data['image'] | |
norm_img, valid_ratio = resize_norm_img(img, self.image_shape, | |
self.padding) | |
data['image'] = norm_img | |
data['valid_ratio'] = valid_ratio | |
return data | |
class RobustScannerRecResizeImg(object): | |
def __init__(self, | |
image_shape, | |
max_text_length, | |
width_downsample_ratio=0.25, | |
**kwargs): | |
self.image_shape = image_shape | |
self.width_downsample_ratio = width_downsample_ratio | |
self.max_text_length = max_text_length | |
def __call__(self, data): | |
img = data['image'] | |
norm_img, resize_shape, pad_shape, valid_ratio = resize_norm_img_sar( | |
img, self.image_shape, self.width_downsample_ratio) | |
word_positons = np.array(range(0, self.max_text_length)).astype('int64') | |
data['image'] = norm_img | |
data['resized_shape'] = resize_shape | |
data['pad_shape'] = pad_shape | |
data['valid_ratio'] = valid_ratio | |
data['word_positons'] = word_positons | |
return data | |
def resize_norm_img_sar(img, image_shape, width_downsample_ratio=0.25): | |
imgC, imgH, imgW_min, imgW_max = image_shape | |
h = img.shape[0] | |
w = img.shape[1] | |
valid_ratio = 1.0 | |
# make sure new_width is an integral multiple of width_divisor. | |
width_divisor = int(1 / width_downsample_ratio) | |
# resize | |
ratio = w / float(h) | |
resize_w = math.ceil(imgH * ratio) | |
if resize_w % width_divisor != 0: | |
resize_w = round(resize_w / width_divisor) * width_divisor | |
if imgW_min is not None: | |
resize_w = max(imgW_min, resize_w) | |
if imgW_max is not None: | |
valid_ratio = min(1.0, 1.0 * resize_w / imgW_max) | |
resize_w = min(imgW_max, resize_w) | |
resized_image = cv2.resize(img, (resize_w, imgH)) | |
resized_image = resized_image.astype('float32') | |
# norm | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
resize_shape = resized_image.shape | |
padding_im = -1.0 * np.ones((imgC, imgH, imgW_max), dtype=np.float32) | |
padding_im[:, :, 0:resize_w] = resized_image | |
pad_shape = padding_im.shape | |
return padding_im, resize_shape, pad_shape, valid_ratio | |
def resize_norm_img(img, | |
image_shape, | |
padding=True, | |
interpolation=cv2.INTER_LINEAR): | |
imgC, imgH, imgW = image_shape | |
h = img.shape[0] | |
w = img.shape[1] | |
if not padding: | |
resized_image = cv2.resize( | |
img, (imgW, imgH), interpolation=interpolation) | |
resized_w = imgW | |
else: | |
ratio = w / float(h) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype('float32') | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
return padding_im, valid_ratio | |
def resize_norm_img_chinese(img, image_shape): | |
imgC, imgH, imgW = image_shape | |
# todo: change to 0 and modified image shape | |
max_wh_ratio = imgW * 1.0 / imgH | |
h, w = img.shape[0], img.shape[1] | |
ratio = w * 1.0 / h | |
max_wh_ratio = max(max_wh_ratio, ratio) | |
imgW = int(imgH * max_wh_ratio) | |
if math.ceil(imgH * ratio) > imgW: | |
resized_w = imgW | |
else: | |
resized_w = int(math.ceil(imgH * ratio)) | |
resized_image = cv2.resize(img, (resized_w, imgH)) | |
resized_image = resized_image.astype('float32') | |
if image_shape[0] == 1: | |
resized_image = resized_image / 255 | |
resized_image = resized_image[np.newaxis, :] | |
else: | |
resized_image = resized_image.transpose((2, 0, 1)) / 255 | |
resized_image -= 0.5 | |
resized_image /= 0.5 | |
padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) | |
padding_im[:, :, 0:resized_w] = resized_image | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
return padding_im, valid_ratio | |
def resize_norm_img_srn(img, image_shape): | |
imgC, imgH, imgW = image_shape | |
img_black = np.zeros((imgH, imgW)) | |
im_hei = img.shape[0] | |
im_wid = img.shape[1] | |
if im_wid <= im_hei * 1: | |
img_new = cv2.resize(img, (imgH * 1, imgH)) | |
elif im_wid <= im_hei * 2: | |
img_new = cv2.resize(img, (imgH * 2, imgH)) | |
elif im_wid <= im_hei * 3: | |
img_new = cv2.resize(img, (imgH * 3, imgH)) | |
else: | |
img_new = cv2.resize(img, (imgW, imgH)) | |
img_np = np.asarray(img_new) | |
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) | |
img_black[:, 0:img_np.shape[1]] = img_np | |
img_black = img_black[:, :, np.newaxis] | |
row, col, c = img_black.shape | |
c = 1 | |
return np.reshape(img_black, (c, row, col)).astype(np.float32) | |
def resize_norm_img_abinet(img, image_shape): | |
imgC, imgH, imgW = image_shape | |
resized_image = cv2.resize( | |
img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) | |
resized_w = imgW | |
resized_image = resized_image.astype('float32') | |
resized_image = resized_image / 255. | |
mean = np.array([0.485, 0.456, 0.406]) | |
std = np.array([0.229, 0.224, 0.225]) | |
resized_image = ( | |
resized_image - mean[None, None, ...]) / std[None, None, ...] | |
resized_image = resized_image.transpose((2, 0, 1)) | |
resized_image = resized_image.astype('float32') | |
valid_ratio = min(1.0, float(resized_w / imgW)) | |
return resized_image, valid_ratio | |
def srn_other_inputs(image_shape, num_heads, max_text_length): | |
imgC, imgH, imgW = image_shape | |
feature_dim = int((imgH / 8) * (imgW / 8)) | |
encoder_word_pos = np.array(range(0, feature_dim)).reshape( | |
(feature_dim, 1)).astype('int64') | |
gsrm_word_pos = np.array(range(0, max_text_length)).reshape( | |
(max_text_length, 1)).astype('int64') | |
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) | |
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( | |
[1, max_text_length, max_text_length]) | |
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, | |
[num_heads, 1, 1]) * [-1e9] | |
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( | |
[1, max_text_length, max_text_length]) | |
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, | |
[num_heads, 1, 1]) * [-1e9] | |
return [ | |
encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, | |
gsrm_slf_attn_bias2 | |
] | |
def flag(): | |
""" | |
flag | |
""" | |
return 1 if random.random() > 0.5000001 else -1 | |
def hsv_aug(img): | |
""" | |
cvtColor | |
""" | |
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) | |
delta = 0.001 * random.random() * flag() | |
hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta) | |
new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
return new_img | |
def blur(img): | |
""" | |
blur | |
""" | |
h, w, _ = img.shape | |
if h > 10 and w > 10: | |
return cv2.GaussianBlur(img, (5, 5), 1) | |
else: | |
return img | |
def jitter(img): | |
""" | |
jitter | |
""" | |
w, h, _ = img.shape | |
if h > 10 and w > 10: | |
thres = min(w, h) | |
s = int(random.random() * thres * 0.01) | |
src_img = img.copy() | |
for i in range(s): | |
img[i:, i:, :] = src_img[:w - i, :h - i, :] | |
return img | |
else: | |
return img | |
def add_gasuss_noise(image, mean=0, var=0.1): | |
""" | |
Gasuss noise | |
""" | |
noise = np.random.normal(mean, var**0.5, image.shape) | |
out = image + 0.5 * noise | |
out = np.clip(out, 0, 255) | |
out = np.uint8(out) | |
return out | |
def get_crop(image): | |
""" | |
random crop | |
""" | |
h, w, _ = image.shape | |
top_min = 1 | |
top_max = 8 | |
top_crop = int(random.randint(top_min, top_max)) | |
top_crop = min(top_crop, h - 1) | |
crop_img = image.copy() | |
ratio = random.randint(0, 1) | |
if ratio: | |
crop_img = crop_img[top_crop:h, :, :] | |
else: | |
crop_img = crop_img[0:h - top_crop, :, :] | |
return crop_img | |
def rad(x): | |
""" | |
rad | |
""" | |
return x * np.pi / 180 | |
def get_warpR(config): | |
""" | |
get_warpR | |
""" | |
anglex, angley, anglez, fov, w, h, r = \ | |
config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r | |
if w > 69 and w < 112: | |
anglex = anglex * 1.5 | |
z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2)) | |
# Homogeneous coordinate transformation matrix | |
rx = np.array([[1, 0, 0, 0], | |
[0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [ | |
0, | |
-np.sin(rad(anglex)), | |
np.cos(rad(anglex)), | |
0, | |
], [0, 0, 0, 1]], np.float32) | |
ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], | |
[0, 1, 0, 0], [ | |
-np.sin(rad(angley)), | |
0, | |
np.cos(rad(angley)), | |
0, | |
], [0, 0, 0, 1]], np.float32) | |
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], | |
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], | |
[0, 0, 1, 0], [0, 0, 0, 1]], np.float32) | |
r = rx.dot(ry).dot(rz) | |
# generate 4 points | |
pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) | |
p1 = np.array([0, 0, 0, 0], np.float32) - pcenter | |
p2 = np.array([w, 0, 0, 0], np.float32) - pcenter | |
p3 = np.array([0, h, 0, 0], np.float32) - pcenter | |
p4 = np.array([w, h, 0, 0], np.float32) - pcenter | |
dst1 = r.dot(p1) | |
dst2 = r.dot(p2) | |
dst3 = r.dot(p3) | |
dst4 = r.dot(p4) | |
list_dst = np.array([dst1, dst2, dst3, dst4]) | |
org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) | |
dst = np.zeros((4, 2), np.float32) | |
# Project onto the image plane | |
dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0] | |
dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1] | |
warpR = cv2.getPerspectiveTransform(org, dst) | |
dst1, dst2, dst3, dst4 = dst | |
r1 = int(min(dst1[1], dst2[1])) | |
r2 = int(max(dst3[1], dst4[1])) | |
c1 = int(min(dst1[0], dst3[0])) | |
c2 = int(max(dst2[0], dst4[0])) | |
try: | |
ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1)) | |
dx = -c1 | |
dy = -r1 | |
T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]]) | |
ret = T1.dot(warpR) | |
except: | |
ratio = 1.0 | |
T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]]) | |
ret = T1 | |
return ret, (-r1, -c1), ratio, dst | |
def get_warpAffine(config): | |
""" | |
get_warpAffine | |
""" | |
anglez = config.anglez | |
rz = np.array([[np.cos(rad(anglez)), np.sin(rad(anglez)), 0], | |
[-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32) | |
return rz | |