Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/basic_loss.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
class BalanceLoss(nn.Layer): | |
def __init__(self, | |
balance_loss=True, | |
main_loss_type='DiceLoss', | |
negative_ratio=3, | |
return_origin=False, | |
eps=1e-6, | |
**kwargs): | |
""" | |
The BalanceLoss for Differentiable Binarization text detection | |
args: | |
balance_loss (bool): whether balance loss or not, default is True | |
main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss', | |
'Euclidean','BCELoss', 'MaskL1Loss'], default is 'DiceLoss'. | |
negative_ratio (int|float): float, default is 3. | |
return_origin (bool): whether return unbalanced loss or not, default is False. | |
eps (float): default is 1e-6. | |
""" | |
super(BalanceLoss, self).__init__() | |
self.balance_loss = balance_loss | |
self.main_loss_type = main_loss_type | |
self.negative_ratio = negative_ratio | |
self.return_origin = return_origin | |
self.eps = eps | |
if self.main_loss_type == "CrossEntropy": | |
self.loss = nn.CrossEntropyLoss() | |
elif self.main_loss_type == "Euclidean": | |
self.loss = nn.MSELoss() | |
elif self.main_loss_type == "DiceLoss": | |
self.loss = DiceLoss(self.eps) | |
elif self.main_loss_type == "BCELoss": | |
self.loss = BCELoss(reduction='none') | |
elif self.main_loss_type == "MaskL1Loss": | |
self.loss = MaskL1Loss(self.eps) | |
else: | |
loss_type = [ | |
'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss' | |
] | |
raise Exception( | |
"main_loss_type in BalanceLoss() can only be one of {}".format( | |
loss_type)) | |
def forward(self, pred, gt, mask=None): | |
""" | |
The BalanceLoss for Differentiable Binarization text detection | |
args: | |
pred (variable): predicted feature maps. | |
gt (variable): ground truth feature maps. | |
mask (variable): masked maps. | |
return: (variable) balanced loss | |
""" | |
positive = gt * mask | |
negative = (1 - gt) * mask | |
positive_count = int(positive.sum()) | |
negative_count = int( | |
min(negative.sum(), positive_count * self.negative_ratio)) | |
loss = self.loss(pred, gt, mask=mask) | |
if not self.balance_loss: | |
return loss | |
positive_loss = positive * loss | |
negative_loss = negative * loss | |
negative_loss = paddle.reshape(negative_loss, shape=[-1]) | |
if negative_count > 0: | |
sort_loss = negative_loss.sort(descending=True) | |
negative_loss = sort_loss[:negative_count] | |
# negative_loss, _ = paddle.topk(negative_loss, k=negative_count_int) | |
balance_loss = (positive_loss.sum() + negative_loss.sum()) / ( | |
positive_count + negative_count + self.eps) | |
else: | |
balance_loss = positive_loss.sum() / (positive_count + self.eps) | |
if self.return_origin: | |
return balance_loss, loss | |
return balance_loss | |
class DiceLoss(nn.Layer): | |
def __init__(self, eps=1e-6): | |
super(DiceLoss, self).__init__() | |
self.eps = eps | |
def forward(self, pred, gt, mask, weights=None): | |
""" | |
DiceLoss function. | |
""" | |
assert pred.shape == gt.shape | |
assert pred.shape == mask.shape | |
if weights is not None: | |
assert weights.shape == mask.shape | |
mask = weights * mask | |
intersection = paddle.sum(pred * gt * mask) | |
union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps | |
loss = 1 - 2.0 * intersection / union | |
assert loss <= 1 | |
return loss | |
class MaskL1Loss(nn.Layer): | |
def __init__(self, eps=1e-6): | |
super(MaskL1Loss, self).__init__() | |
self.eps = eps | |
def forward(self, pred, gt, mask): | |
""" | |
Mask L1 Loss | |
""" | |
loss = (paddle.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps) | |
loss = paddle.mean(loss) | |
return loss | |
class BCELoss(nn.Layer): | |
def __init__(self, reduction='mean'): | |
super(BCELoss, self).__init__() | |
self.reduction = reduction | |
def forward(self, input, label, mask=None, weight=None, name=None): | |
loss = F.binary_cross_entropy(input, label, reduction=self.reduction) | |
return loss | |