Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss | |
class DBLoss(nn.Layer): | |
""" | |
Differentiable Binarization (DB) Loss Function | |
args: | |
param (dict): the super paramter for DB Loss | |
""" | |
def __init__(self, | |
balance_loss=True, | |
main_loss_type='DiceLoss', | |
alpha=5, | |
beta=10, | |
ohem_ratio=3, | |
eps=1e-6, | |
**kwargs): | |
super(DBLoss, self).__init__() | |
self.alpha = alpha | |
self.beta = beta | |
self.dice_loss = DiceLoss(eps=eps) | |
self.l1_loss = MaskL1Loss(eps=eps) | |
self.bce_loss = BalanceLoss( | |
balance_loss=balance_loss, | |
main_loss_type=main_loss_type, | |
negative_ratio=ohem_ratio) | |
def forward(self, predicts, labels): | |
predict_maps = predicts['maps'] | |
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[ | |
1:] | |
shrink_maps = predict_maps[:, 0, :, :] | |
threshold_maps = predict_maps[:, 1, :, :] | |
binary_maps = predict_maps[:, 2, :, :] | |
loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map, | |
label_shrink_mask) | |
loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map, | |
label_threshold_mask) | |
loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map, | |
label_shrink_mask) | |
loss_shrink_maps = self.alpha * loss_shrink_maps | |
loss_threshold_maps = self.beta * loss_threshold_maps | |
# CBN loss | |
if 'distance_maps' in predicts.keys(): | |
distance_maps = predicts['distance_maps'] | |
cbn_maps = predicts['cbn_maps'] | |
cbn_loss = self.bce_loss(cbn_maps[:, 0, :, :], label_shrink_map, | |
label_shrink_mask) | |
else: | |
dis_loss = paddle.to_tensor([0.]) | |
cbn_loss = paddle.to_tensor([0.]) | |
loss_all = loss_shrink_maps + loss_threshold_maps \ | |
+ loss_binary_maps | |
losses = {'loss': loss_all+ cbn_loss, \ | |
"loss_shrink_maps": loss_shrink_maps, \ | |
"loss_threshold_maps": loss_threshold_maps, \ | |
"loss_binary_maps": loss_binary_maps, \ | |
"loss_cbn": cbn_loss} | |
return losses | |