Spaces:
Runtime error
Runtime error
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
from .det_basic_loss import DiceLoss | |
import numpy as np | |
class SASTLoss(nn.Layer): | |
""" | |
""" | |
def __init__(self, eps=1e-6, **kwargs): | |
super(SASTLoss, self).__init__() | |
self.dice_loss = DiceLoss(eps=eps) | |
def forward(self, predicts, labels): | |
""" | |
tcl_pos: N x 128 x 3 | |
tcl_mask: N x 128 x 1 | |
tcl_label: N x X list or LoDTensor | |
""" | |
f_score = predicts['f_score'] | |
f_border = predicts['f_border'] | |
f_tvo = predicts['f_tvo'] | |
f_tco = predicts['f_tco'] | |
l_score, l_border, l_mask, l_tvo, l_tco = labels[1:] | |
#score_loss | |
intersection = paddle.sum(f_score * l_score * l_mask) | |
union = paddle.sum(f_score * l_mask) + paddle.sum(l_score * l_mask) | |
score_loss = 1.0 - 2 * intersection / (union + 1e-5) | |
#border loss | |
l_border_split, l_border_norm = paddle.split( | |
l_border, num_or_sections=[4, 1], axis=1) | |
f_border_split = f_border | |
border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1]) | |
l_border_norm_split = paddle.expand( | |
x=l_border_norm, shape=border_ex_shape) | |
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape) | |
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape) | |
border_diff = l_border_split - f_border_split | |
abs_border_diff = paddle.abs(border_diff) | |
border_sign = abs_border_diff < 1.0 | |
border_sign = paddle.cast(border_sign, dtype='float32') | |
border_sign.stop_gradient = True | |
border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \ | |
(abs_border_diff - 0.5) * (1.0 - border_sign) | |
border_out_loss = l_border_norm_split * border_in_loss | |
border_loss = paddle.sum(border_out_loss * l_border_score * l_border_mask) / \ | |
(paddle.sum(l_border_score * l_border_mask) + 1e-5) | |
#tvo_loss | |
l_tvo_split, l_tvo_norm = paddle.split( | |
l_tvo, num_or_sections=[8, 1], axis=1) | |
f_tvo_split = f_tvo | |
tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1]) | |
l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape) | |
l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape) | |
l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape) | |
# | |
tvo_geo_diff = l_tvo_split - f_tvo_split | |
abs_tvo_geo_diff = paddle.abs(tvo_geo_diff) | |
tvo_sign = abs_tvo_geo_diff < 1.0 | |
tvo_sign = paddle.cast(tvo_sign, dtype='float32') | |
tvo_sign.stop_gradient = True | |
tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \ | |
(abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign) | |
tvo_out_loss = l_tvo_norm_split * tvo_in_loss | |
tvo_loss = paddle.sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \ | |
(paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5) | |
#tco_loss | |
l_tco_split, l_tco_norm = paddle.split( | |
l_tco, num_or_sections=[2, 1], axis=1) | |
f_tco_split = f_tco | |
tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1]) | |
l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape) | |
l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape) | |
l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape) | |
tco_geo_diff = l_tco_split - f_tco_split | |
abs_tco_geo_diff = paddle.abs(tco_geo_diff) | |
tco_sign = abs_tco_geo_diff < 1.0 | |
tco_sign = paddle.cast(tco_sign, dtype='float32') | |
tco_sign.stop_gradient = True | |
tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \ | |
(abs_tco_geo_diff - 0.5) * (1.0 - tco_sign) | |
tco_out_loss = l_tco_norm_split * tco_in_loss | |
tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \ | |
(paddle.sum(l_tco_score * l_tco_mask) + 1e-5) | |
# total loss | |
tvo_lw, tco_lw = 1.5, 1.5 | |
score_lw, border_lw = 1.0, 1.0 | |
total_loss = score_loss * score_lw + border_loss * border_lw + \ | |
tvo_loss * tvo_lw + tco_loss * tco_lw | |
losses = {'loss':total_loss, "score_loss":score_loss,\ | |
"border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss} | |
return losses | |