Spaces:
Runtime error
Runtime error
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
#Licensed under the Apache License, Version 2.0 (the "License"); | |
#you may not use this file except in compliance with the License. | |
#You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
#Unless required by applicable law or agreed to in writing, software | |
#distributed under the License is distributed on an "AS IS" BASIS, | |
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
#See the License for the specific language governing permissions and | |
#limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
import numpy as np | |
import cv2 | |
from .rec_ctc_loss import CTCLoss | |
from .rec_sar_loss import SARLoss | |
from .rec_ce_loss import CELoss | |
from .basic_loss import DMLLoss, KLDivLoss, DKDLoss | |
from .basic_loss import DistanceLoss | |
from .basic_loss import LossFromOutput | |
from .det_db_loss import DBLoss | |
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss | |
from .vqa_token_layoutlm_loss import VQASerTokenLayoutLMLoss | |
def _sum_loss(loss_dict): | |
if "loss" in loss_dict.keys(): | |
return loss_dict | |
else: | |
loss_dict["loss"] = 0. | |
for k, value in loss_dict.items(): | |
if k == "loss": | |
continue | |
else: | |
loss_dict["loss"] += value | |
return loss_dict | |
class DistillationDMLLoss(DMLLoss): | |
""" | |
""" | |
def __init__(self, | |
model_name_pairs=[], | |
act=None, | |
use_log=False, | |
key=None, | |
multi_head=False, | |
dis_head='ctc', | |
maps_name=None, | |
name="dml"): | |
super().__init__(act=act, use_log=use_log) | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.multi_head = multi_head | |
self.dis_head = dis_head | |
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) | |
self.name = name | |
self.maps_name = self._check_maps_name(maps_name) | |
def _check_model_name_pairs(self, model_name_pairs): | |
if not isinstance(model_name_pairs, list): | |
return [] | |
elif isinstance(model_name_pairs[0], list) and isinstance( | |
model_name_pairs[0][0], str): | |
return model_name_pairs | |
else: | |
return [model_name_pairs] | |
def _check_maps_name(self, maps_name): | |
if maps_name is None: | |
return None | |
elif type(maps_name) == str: | |
return [maps_name] | |
elif type(maps_name) == list: | |
return [maps_name] | |
else: | |
return None | |
def _slice_out(self, outs): | |
new_outs = {} | |
for k in self.maps_name: | |
if k == "thrink_maps": | |
new_outs[k] = outs[:, 0, :, :] | |
elif k == "threshold_maps": | |
new_outs[k] = outs[:, 1, :, :] | |
elif k == "binary_maps": | |
new_outs[k] = outs[:, 2, :, :] | |
else: | |
continue | |
return new_outs | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.maps_name is None: | |
if self.multi_head: | |
loss = super().forward(out1[self.dis_head], | |
out2[self.dis_head]) | |
else: | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
else: | |
outs1 = self._slice_out(out1) | |
outs2 = self._slice_out(out2) | |
for _c, k in enumerate(outs1.keys()): | |
loss = super().forward(outs1[k], outs2[k]) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}_{}".format(key, pair[ | |
0], pair[1], self.maps_name, idx)] = loss[key] | |
else: | |
loss_dict["{}_{}_{}".format(self.name, self.maps_name[ | |
_c], idx)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationKLDivLoss(KLDivLoss): | |
""" | |
""" | |
def __init__(self, | |
model_name_pairs=[], | |
key=None, | |
multi_head=False, | |
dis_head='ctc', | |
maps_name=None, | |
name="kl_div"): | |
super().__init__() | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.multi_head = multi_head | |
self.dis_head = dis_head | |
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) | |
self.name = name | |
self.maps_name = self._check_maps_name(maps_name) | |
def _check_model_name_pairs(self, model_name_pairs): | |
if not isinstance(model_name_pairs, list): | |
return [] | |
elif isinstance(model_name_pairs[0], list) and isinstance( | |
model_name_pairs[0][0], str): | |
return model_name_pairs | |
else: | |
return [model_name_pairs] | |
def _check_maps_name(self, maps_name): | |
if maps_name is None: | |
return None | |
elif type(maps_name) == str: | |
return [maps_name] | |
elif type(maps_name) == list: | |
return [maps_name] | |
else: | |
return None | |
def _slice_out(self, outs): | |
new_outs = {} | |
for k in self.maps_name: | |
if k == "thrink_maps": | |
new_outs[k] = outs[:, 0, :, :] | |
elif k == "threshold_maps": | |
new_outs[k] = outs[:, 1, :, :] | |
elif k == "binary_maps": | |
new_outs[k] = outs[:, 2, :, :] | |
else: | |
continue | |
return new_outs | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.maps_name is None: | |
if self.multi_head: | |
# for nrtr dml loss | |
max_len = batch[3].max() | |
tgt = batch[2][:, 1:2 + max_len] | |
tgt = tgt.reshape([-1]) | |
non_pad_mask = paddle.not_equal( | |
tgt, paddle.zeros( | |
tgt.shape, dtype=tgt.dtype)) | |
loss = super().forward(out1[self.dis_head], | |
out2[self.dis_head], non_pad_mask) | |
else: | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
else: | |
outs1 = self._slice_out(out1) | |
outs2 = self._slice_out(out2) | |
for _c, k in enumerate(outs1.keys()): | |
loss = super().forward(outs1[k], outs2[k]) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}_{}".format(key, pair[ | |
0], pair[1], self.maps_name, idx)] = loss[key] | |
else: | |
loss_dict["{}_{}_{}".format(self.name, self.maps_name[ | |
_c], idx)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationDKDLoss(DKDLoss): | |
""" | |
""" | |
def __init__(self, | |
model_name_pairs=[], | |
key=None, | |
multi_head=False, | |
dis_head='ctc', | |
maps_name=None, | |
name="dkd", | |
temperature=1.0, | |
alpha=1.0, | |
beta=1.0): | |
super().__init__(temperature, alpha, beta) | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.multi_head = multi_head | |
self.dis_head = dis_head | |
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) | |
self.name = name | |
self.maps_name = self._check_maps_name(maps_name) | |
def _check_model_name_pairs(self, model_name_pairs): | |
if not isinstance(model_name_pairs, list): | |
return [] | |
elif isinstance(model_name_pairs[0], list) and isinstance( | |
model_name_pairs[0][0], str): | |
return model_name_pairs | |
else: | |
return [model_name_pairs] | |
def _check_maps_name(self, maps_name): | |
if maps_name is None: | |
return None | |
elif type(maps_name) == str: | |
return [maps_name] | |
elif type(maps_name) == list: | |
return [maps_name] | |
else: | |
return None | |
def _slice_out(self, outs): | |
new_outs = {} | |
for k in self.maps_name: | |
if k == "thrink_maps": | |
new_outs[k] = outs[:, 0, :, :] | |
elif k == "threshold_maps": | |
new_outs[k] = outs[:, 1, :, :] | |
elif k == "binary_maps": | |
new_outs[k] = outs[:, 2, :, :] | |
else: | |
continue | |
return new_outs | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.maps_name is None: | |
if self.multi_head: | |
# for nrtr dml loss | |
max_len = batch[3].max() | |
tgt = batch[2][:, 1:2 + | |
max_len] # [batch_size, max_len + 1] | |
tgt = tgt.reshape([-1]) # batch_size * (max_len + 1) | |
non_pad_mask = paddle.not_equal( | |
tgt, paddle.zeros( | |
tgt.shape, | |
dtype=tgt.dtype)) # batch_size * (max_len + 1) | |
loss = super().forward( | |
out1[self.dis_head], out2[self.dis_head], tgt, | |
non_pad_mask) # [batch_size, max_len + 1, num_char] | |
else: | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
else: | |
outs1 = self._slice_out(out1) | |
outs2 = self._slice_out(out2) | |
for _c, k in enumerate(outs1.keys()): | |
loss = super().forward(outs1[k], outs2[k]) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}_{}".format(key, pair[ | |
0], pair[1], self.maps_name, idx)] = loss[key] | |
else: | |
loss_dict["{}_{}_{}".format(self.name, self.maps_name[ | |
_c], idx)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationNRTRDMLLoss(DistillationDMLLoss): | |
""" | |
""" | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.multi_head: | |
# for nrtr dml loss | |
max_len = batch[3].max() | |
tgt = batch[2][:, 1:2 + max_len] | |
tgt = tgt.reshape([-1]) | |
non_pad_mask = paddle.not_equal( | |
tgt, paddle.zeros( | |
tgt.shape, dtype=tgt.dtype)) | |
loss = super().forward(out1[self.dis_head], out2[self.dis_head], | |
non_pad_mask) | |
else: | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationKLDivLoss(KLDivLoss): | |
""" | |
""" | |
def __init__(self, | |
model_name_pairs=[], | |
key=None, | |
multi_head=False, | |
dis_head='ctc', | |
maps_name=None, | |
name="kl_div"): | |
super().__init__() | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.multi_head = multi_head | |
self.dis_head = dis_head | |
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) | |
self.name = name | |
self.maps_name = self._check_maps_name(maps_name) | |
def _check_model_name_pairs(self, model_name_pairs): | |
if not isinstance(model_name_pairs, list): | |
return [] | |
elif isinstance(model_name_pairs[0], list) and isinstance( | |
model_name_pairs[0][0], str): | |
return model_name_pairs | |
else: | |
return [model_name_pairs] | |
def _check_maps_name(self, maps_name): | |
if maps_name is None: | |
return None | |
elif type(maps_name) == str: | |
return [maps_name] | |
elif type(maps_name) == list: | |
return [maps_name] | |
else: | |
return None | |
def _slice_out(self, outs): | |
new_outs = {} | |
for k in self.maps_name: | |
if k == "thrink_maps": | |
new_outs[k] = outs[:, 0, :, :] | |
elif k == "threshold_maps": | |
new_outs[k] = outs[:, 1, :, :] | |
elif k == "binary_maps": | |
new_outs[k] = outs[:, 2, :, :] | |
else: | |
continue | |
return new_outs | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.maps_name is None: | |
if self.multi_head: | |
# for nrtr dml loss | |
max_len = batch[3].max() | |
tgt = batch[2][:, 1:2 + max_len] | |
tgt = tgt.reshape([-1]) | |
non_pad_mask = paddle.not_equal( | |
tgt, paddle.zeros( | |
tgt.shape, dtype=tgt.dtype)) | |
loss = super().forward(out1[self.dis_head], | |
out2[self.dis_head], non_pad_mask) | |
else: | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
else: | |
outs1 = self._slice_out(out1) | |
outs2 = self._slice_out(out2) | |
for _c, k in enumerate(outs1.keys()): | |
loss = super().forward(outs1[k], outs2[k]) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}_{}".format(key, pair[ | |
0], pair[1], self.maps_name, idx)] = loss[key] | |
else: | |
loss_dict["{}_{}_{}".format(self.name, self.maps_name[ | |
_c], idx)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationDKDLoss(DKDLoss): | |
""" | |
""" | |
def __init__(self, | |
model_name_pairs=[], | |
key=None, | |
multi_head=False, | |
dis_head='ctc', | |
maps_name=None, | |
name="dkd", | |
temperature=1.0, | |
alpha=1.0, | |
beta=1.0): | |
super().__init__(temperature, alpha, beta) | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.multi_head = multi_head | |
self.dis_head = dis_head | |
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) | |
self.name = name | |
self.maps_name = self._check_maps_name(maps_name) | |
def _check_model_name_pairs(self, model_name_pairs): | |
if not isinstance(model_name_pairs, list): | |
return [] | |
elif isinstance(model_name_pairs[0], list) and isinstance( | |
model_name_pairs[0][0], str): | |
return model_name_pairs | |
else: | |
return [model_name_pairs] | |
def _check_maps_name(self, maps_name): | |
if maps_name is None: | |
return None | |
elif type(maps_name) == str: | |
return [maps_name] | |
elif type(maps_name) == list: | |
return [maps_name] | |
else: | |
return None | |
def _slice_out(self, outs): | |
new_outs = {} | |
for k in self.maps_name: | |
if k == "thrink_maps": | |
new_outs[k] = outs[:, 0, :, :] | |
elif k == "threshold_maps": | |
new_outs[k] = outs[:, 1, :, :] | |
elif k == "binary_maps": | |
new_outs[k] = outs[:, 2, :, :] | |
else: | |
continue | |
return new_outs | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.maps_name is None: | |
if self.multi_head: | |
# for nrtr dml loss | |
max_len = batch[3].max() | |
tgt = batch[2][:, 1:2 + | |
max_len] # [batch_size, max_len + 1] | |
tgt = tgt.reshape([-1]) # batch_size * (max_len + 1) | |
non_pad_mask = paddle.not_equal( | |
tgt, paddle.zeros( | |
tgt.shape, | |
dtype=tgt.dtype)) # batch_size * (max_len + 1) | |
loss = super().forward( | |
out1[self.dis_head], out2[self.dis_head], tgt, | |
non_pad_mask) # [batch_size, max_len + 1, num_char] | |
else: | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1], | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
else: | |
outs1 = self._slice_out(out1) | |
outs2 = self._slice_out(out2) | |
for _c, k in enumerate(outs1.keys()): | |
loss = super().forward(outs1[k], outs2[k]) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}_{}_{}".format(key, pair[ | |
0], pair[1], self.maps_name, idx)] = loss[key] | |
else: | |
loss_dict["{}_{}_{}".format(self.name, self.maps_name[ | |
_c], idx)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationCTCLoss(CTCLoss): | |
def __init__(self, | |
model_name_list=[], | |
key=None, | |
multi_head=False, | |
name="loss_ctc"): | |
super().__init__() | |
self.model_name_list = model_name_list | |
self.key = key | |
self.name = name | |
self.multi_head = multi_head | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, model_name in enumerate(self.model_name_list): | |
out = predicts[model_name] | |
if self.key is not None: | |
out = out[self.key] | |
if self.multi_head: | |
assert 'ctc' in out, 'multi head has multi out' | |
loss = super().forward(out['ctc'], batch[:2] + batch[3:]) | |
else: | |
loss = super().forward(out, batch) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}".format(self.name, model_name, | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, model_name)] = loss | |
return loss_dict | |
class DistillationSARLoss(SARLoss): | |
def __init__(self, | |
model_name_list=[], | |
key=None, | |
multi_head=False, | |
name="loss_sar", | |
**kwargs): | |
ignore_index = kwargs.get('ignore_index', 92) | |
super().__init__(ignore_index=ignore_index) | |
self.model_name_list = model_name_list | |
self.key = key | |
self.name = name | |
self.multi_head = multi_head | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, model_name in enumerate(self.model_name_list): | |
out = predicts[model_name] | |
if self.key is not None: | |
out = out[self.key] | |
if self.multi_head: | |
assert 'sar' in out, 'multi head has multi out' | |
loss = super().forward(out['sar'], batch[:1] + batch[2:]) | |
else: | |
loss = super().forward(out, batch) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}".format(self.name, model_name, | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, model_name)] = loss | |
return loss_dict | |
class DistillationNRTRLoss(CELoss): | |
def __init__(self, | |
model_name_list=[], | |
key=None, | |
multi_head=False, | |
smoothing=True, | |
name="loss_nrtr", | |
**kwargs): | |
super().__init__(smoothing=smoothing) | |
self.model_name_list = model_name_list | |
self.key = key | |
self.name = name | |
self.multi_head = multi_head | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, model_name in enumerate(self.model_name_list): | |
out = predicts[model_name] | |
if self.key is not None: | |
out = out[self.key] | |
if self.multi_head: | |
assert 'gtc' in out, 'multi head has multi out' | |
loss = super().forward(out['gtc'], batch[:1] + batch[2:]) | |
else: | |
loss = super().forward(out, batch) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}".format(self.name, model_name, | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, model_name)] = loss | |
return loss_dict | |
class DistillationDBLoss(DBLoss): | |
def __init__(self, | |
model_name_list=[], | |
balance_loss=True, | |
main_loss_type='DiceLoss', | |
alpha=5, | |
beta=10, | |
ohem_ratio=3, | |
eps=1e-6, | |
name="db", | |
**kwargs): | |
super().__init__() | |
self.model_name_list = model_name_list | |
self.name = name | |
self.key = None | |
def forward(self, predicts, batch): | |
loss_dict = {} | |
for idx, model_name in enumerate(self.model_name_list): | |
out = predicts[model_name] | |
if self.key is not None: | |
out = out[self.key] | |
loss = super().forward(out, batch) | |
if isinstance(loss, dict): | |
for key in loss.keys(): | |
if key == "loss": | |
continue | |
name = "{}_{}_{}".format(self.name, model_name, key) | |
loss_dict[name] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, model_name)] = loss | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationDilaDBLoss(DBLoss): | |
def __init__(self, | |
model_name_pairs=[], | |
key=None, | |
balance_loss=True, | |
main_loss_type='DiceLoss', | |
alpha=5, | |
beta=10, | |
ohem_ratio=3, | |
eps=1e-6, | |
name="dila_dbloss"): | |
super().__init__() | |
self.model_name_pairs = model_name_pairs | |
self.name = name | |
self.key = key | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
stu_outs = predicts[pair[0]] | |
tch_outs = predicts[pair[1]] | |
if self.key is not None: | |
stu_preds = stu_outs[self.key] | |
tch_preds = tch_outs[self.key] | |
stu_shrink_maps = stu_preds[:, 0, :, :] | |
stu_binary_maps = stu_preds[:, 2, :, :] | |
# dilation to teacher prediction | |
dilation_w = np.array([[1, 1], [1, 1]]) | |
th_shrink_maps = tch_preds[:, 0, :, :] | |
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3 | |
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32) | |
for i in range(th_shrink_maps.shape[0]): | |
dilate_maps[i] = cv2.dilate( | |
th_shrink_maps[i, :, :].astype(np.uint8), dilation_w) | |
th_shrink_maps = paddle.to_tensor(dilate_maps) | |
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[ | |
1:] | |
# calculate the shrink map loss | |
bce_loss = self.alpha * self.bce_loss( | |
stu_shrink_maps, th_shrink_maps, label_shrink_mask) | |
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps, | |
label_shrink_mask) | |
# k = f"{self.name}_{pair[0]}_{pair[1]}" | |
k = "{}_{}_{}".format(self.name, pair[0], pair[1]) | |
loss_dict[k] = bce_loss + loss_binary_maps | |
loss_dict = _sum_loss(loss_dict) | |
return loss_dict | |
class DistillationDistanceLoss(DistanceLoss): | |
""" | |
""" | |
def __init__(self, | |
mode="l2", | |
model_name_pairs=[], | |
key=None, | |
name="loss_distance", | |
**kargs): | |
super().__init__(mode=mode, **kargs) | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.model_name_pairs = model_name_pairs | |
self.name = name + "_l2" | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[ | |
key] | |
else: | |
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1], | |
idx)] = loss | |
return loss_dict | |
class DistillationVQASerTokenLayoutLMLoss(VQASerTokenLayoutLMLoss): | |
def __init__(self, | |
num_classes, | |
model_name_list=[], | |
key=None, | |
name="loss_ser"): | |
super().__init__(num_classes=num_classes) | |
self.model_name_list = model_name_list | |
self.key = key | |
self.name = name | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, model_name in enumerate(self.model_name_list): | |
out = predicts[model_name] | |
if self.key is not None: | |
out = out[self.key] | |
loss = super().forward(out, batch) | |
loss_dict["{}_{}".format(self.name, model_name)] = loss["loss"] | |
return loss_dict | |
class DistillationLossFromOutput(LossFromOutput): | |
def __init__(self, | |
reduction="none", | |
model_name_list=[], | |
dist_key=None, | |
key="loss", | |
name="loss_re"): | |
super().__init__(key=key, reduction=reduction) | |
self.model_name_list = model_name_list | |
self.name = name | |
self.dist_key = dist_key | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, model_name in enumerate(self.model_name_list): | |
out = predicts[model_name] | |
if self.dist_key is not None: | |
out = out[self.dist_key] | |
loss = super().forward(out, batch) | |
loss_dict["{}_{}".format(self.name, model_name)] = loss["loss"] | |
return loss_dict | |
class DistillationSERDMLLoss(DMLLoss): | |
""" | |
""" | |
def __init__(self, | |
act="softmax", | |
use_log=True, | |
num_classes=7, | |
model_name_pairs=[], | |
key=None, | |
name="loss_dml_ser"): | |
super().__init__(act=act, use_log=use_log) | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.name = name | |
self.num_classes = num_classes | |
self.model_name_pairs = model_name_pairs | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
out1 = out1.reshape([-1, out1.shape[-1]]) | |
out2 = out2.reshape([-1, out2.shape[-1]]) | |
attention_mask = batch[2] | |
if attention_mask is not None: | |
active_output = attention_mask.reshape([-1, ]) == 1 | |
out1 = out1[active_output] | |
out2 = out2[active_output] | |
loss_dict["{}_{}".format(self.name, idx)] = super().forward(out1, | |
out2) | |
return loss_dict | |
class DistillationVQADistanceLoss(DistanceLoss): | |
def __init__(self, | |
mode="l2", | |
model_name_pairs=[], | |
key=None, | |
index=None, | |
name="loss_distance", | |
**kargs): | |
super().__init__(mode=mode, **kargs) | |
assert isinstance(model_name_pairs, list) | |
self.key = key | |
self.index = index | |
self.model_name_pairs = model_name_pairs | |
self.name = name + "_l2" | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
attention_mask = batch[2] | |
if self.key is not None: | |
out1 = out1[self.key] | |
out2 = out2[self.key] | |
if self.index is not None: | |
out1 = out1[:, self.index, :, :] | |
out2 = out2[:, self.index, :, :] | |
if attention_mask is not None: | |
max_len = attention_mask.shape[-1] | |
out1 = out1[:, :max_len] | |
out2 = out2[:, :max_len] | |
out1 = out1.reshape([-1, out1.shape[-1]]) | |
out2 = out2.reshape([-1, out2.shape[-1]]) | |
if attention_mask is not None: | |
active_output = attention_mask.reshape([-1, ]) == 1 | |
out1 = out1[active_output] | |
out2 = out2[active_output] | |
loss = super().forward(out1, out2) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}nohu_{}".format(self.name, key, | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1], | |
idx)] = loss | |
return loss_dict | |
class CTCDKDLoss(nn.Layer): | |
""" | |
KLDivLoss | |
""" | |
def __init__(self, temperature=0.5, alpha=1.0, beta=1.0): | |
super().__init__() | |
self.temperature = temperature | |
self.alpha = alpha | |
self.beta = beta | |
self.eps = 1e-6 | |
self.t = temperature | |
self.act = nn.Softmax(axis=-1) | |
self.use_log = True | |
def kl_loss(self, p1, p2): # predict, label | |
loss = paddle.multiply( | |
p2, paddle.log((p2 + self.eps) / (p1 + self.eps) + self.eps)) | |
bs = loss.shape[0] | |
loss = paddle.sum(loss) / bs | |
return loss | |
def _cat_mask(self, t, mask1, mask2): | |
t1 = (t * mask1).sum(axis=1, keepdim=True) | |
t2 = (t * mask2).sum(axis=1, keepdim=True) | |
rt = paddle.concat([t1, t2], axis=1) | |
return rt | |
def multi_label_mask(self, targets): | |
targets = targets.astype("int32") | |
res = F.one_hot(targets, num_classes=11465) | |
mask = paddle.clip(paddle.sum(res, axis=1), 0, 1) | |
mask[:, 0] = 0 # ingore ctc blank label | |
return mask | |
def forward(self, logits_student, logits_teacher, targets, mask=None): | |
gt_mask = self.multi_label_mask(targets) | |
other_mask = paddle.ones_like(gt_mask) - gt_mask | |
pred_student = F.softmax(logits_student / self.temperature, axis=-1) | |
pred_teacher = F.softmax(logits_teacher / self.temperature, axis=-1) | |
# differents with dkd | |
pred_student = paddle.mean(pred_student, axis=1) | |
pred_teacher = paddle.mean(pred_teacher, axis=1) | |
pred_student = self._cat_mask(pred_student, gt_mask, other_mask) | |
pred_teacher = self._cat_mask(pred_teacher, gt_mask, other_mask) | |
# differents with dkd | |
tckd_loss = self.kl_loss(pred_student, pred_teacher) | |
gt_mask_ex = paddle.expand_as(gt_mask.unsqueeze(axis=1), logits_teacher) | |
pred_teacher_part2 = F.softmax( | |
logits_teacher / self.temperature - 1000.0 * gt_mask_ex, axis=-1) | |
pred_student_part2 = F.softmax( | |
logits_student / self.temperature - 1000.0 * gt_mask_ex, axis=-1) | |
# differents with dkd | |
pred_teacher_part2 = paddle.mean(pred_teacher_part2, axis=1) | |
pred_student_part2 = paddle.mean(pred_student_part2, axis=1) | |
# differents with dkd | |
nckd_loss = self.kl_loss(pred_student_part2, pred_teacher_part2) | |
loss = self.alpha * tckd_loss + self.beta * nckd_loss | |
return loss | |
class KLCTCLogits(nn.Layer): | |
def __init__(self, weight=1.0, reduction='mean', mode="mean"): | |
super().__init__() | |
self.weight = weight | |
self.reduction = reduction | |
self.eps = 1e-6 | |
self.t = 0.5 | |
self.act = nn.Softmax(axis=-1) | |
self.use_log = True | |
self.mode = mode | |
self.ctc_dkd_loss = CTCDKDLoss() | |
def kl_loss(self, p1, p2): # predict, label | |
loss = paddle.multiply( | |
p2, paddle.log((p2 + self.eps) / (p1 + self.eps) + self.eps)) | |
bs = loss.shape[0] | |
loss = paddle.sum(loss) / bs | |
return loss | |
def forward_meanmax(self, stu_out, tea_out): | |
stu_out = paddle.mean(F.softmax(stu_out / self.t, axis=-1), axis=1) | |
tea_out = paddle.mean(F.softmax(tea_out / self.t, axis=-1), axis=1) | |
loss = self.kl_loss(stu_out, tea_out) | |
return loss | |
def forward_meanlog(self, stu_out, tea_out): | |
stu_out = paddle.mean(F.softmax(stu_out / self.t, axis=-1), axis=1) | |
tea_out = paddle.mean(F.softmax(tea_out / self.t, axis=-1), axis=1) | |
if self.use_log is True: | |
# for recognition distillation, log is needed for feature map | |
log_out1 = paddle.log(stu_out) | |
log_out2 = paddle.log(tea_out) | |
loss = ( | |
self._kldiv(log_out1, tea_out) + self._kldiv(log_out2, stu_out) | |
) / 2.0 | |
return loss | |
def forward_sum(self, stu_out, tea_out): | |
stu_out = paddle.sum(F.softmax(stu_out / self.t, axis=-1), axis=1) | |
tea_out = paddle.sum(F.softmax(tea_out / self.t, axis=-1), axis=1) | |
stu_out = paddle.log(stu_out) | |
bs = stu_out.shape[0] | |
loss = tea_out * (paddle.log(tea_out + self.eps) - stu_out) | |
loss = paddle.sum(loss, axis=1) / loss.shape[0] | |
return loss | |
def _kldiv(self, x, target): | |
eps = 1.0e-10 | |
loss = target * (paddle.log(target + eps) - x) | |
loss = paddle.sum(paddle.mean(loss, axis=1)) / loss.shape[0] | |
return loss | |
def forward(self, stu_out, tea_out, targets=None): | |
if self.mode == "log": | |
return self.forward_log(stu_out, tea_out) | |
elif self.mode == "mean": | |
blank_mask = paddle.ones_like(stu_out) | |
blank_mask.stop_gradient = True | |
blank_mask[:, :, 0] = -1 | |
stu_out *= blank_mask | |
tea_out *= blank_mask | |
return self.forward_meanmax(stu_out, tea_out) | |
elif self.mode == "sum": | |
return self.forward_sum(stu_out, tea_out) | |
elif self.mode == "meanlog": | |
blank_mask = paddle.ones_like(stu_out) | |
blank_mask.stop_gradient = True | |
blank_mask[:, :, 0] = -1 | |
stu_out *= blank_mask | |
tea_out *= blank_mask | |
return self.forward_meanlog(stu_out, tea_out) | |
elif self.mode == "ctcdkd": | |
# ingore ctc blank logits | |
blank_mask = paddle.ones_like(stu_out) | |
blank_mask.stop_gradient = True | |
blank_mask[:, :, 0] = -1 | |
stu_out *= blank_mask | |
tea_out *= blank_mask | |
return self.ctc_dkd_loss(stu_out, tea_out, targets) | |
else: | |
raise ValueError("error!!!!!!") | |
def forward_log(self, out1, out2): | |
if self.act is not None: | |
out1 = self.act(out1) + 1e-10 | |
out2 = self.act(out2) + 1e-10 | |
if self.use_log is True: | |
# for recognition distillation, log is needed for feature map | |
log_out1 = paddle.log(out1) | |
log_out2 = paddle.log(out2) | |
loss = ( | |
self._kldiv(log_out1, out2) + self._kldiv(log_out2, out1)) / 2.0 | |
return loss | |
class DistillCTCLogits(KLCTCLogits): | |
def __init__(self, | |
model_name_pairs=[], | |
key=None, | |
name="ctc_logits", | |
reduction="mean"): | |
super().__init__(reduction=reduction) | |
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs) | |
self.key = key | |
self.name = name | |
def _check_model_name_pairs(self, model_name_pairs): | |
if not isinstance(model_name_pairs, list): | |
return [] | |
elif isinstance(model_name_pairs[0], list) and isinstance( | |
model_name_pairs[0][0], str): | |
return model_name_pairs | |
else: | |
return [model_name_pairs] | |
def forward(self, predicts, batch): | |
loss_dict = dict() | |
for idx, pair in enumerate(self.model_name_pairs): | |
out1 = predicts[pair[0]] | |
out2 = predicts[pair[1]] | |
if self.key is not None: | |
out1 = out1[self.key]['ctc'] | |
out2 = out2[self.key]['ctc'] | |
ctc_label = batch[1] | |
loss = super().forward(out1, out2, ctc_label) | |
if isinstance(loss, dict): | |
for key in loss: | |
loss_dict["{}_{}_{}".format(self.name, model_name, | |
idx)] = loss[key] | |
else: | |
loss_dict["{}_{}".format(self.name, idx)] = loss | |
return loss_dict | |