Spaces:
Runtime error
Runtime error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
from .ace_loss import ACELoss | |
from .center_loss import CenterLoss | |
from .rec_ctc_loss import CTCLoss | |
class EnhancedCTCLoss(nn.Layer): | |
def __init__(self, | |
use_focal_loss=False, | |
use_ace_loss=False, | |
ace_loss_weight=0.1, | |
use_center_loss=False, | |
center_loss_weight=0.05, | |
num_classes=6625, | |
feat_dim=96, | |
init_center=False, | |
center_file_path=None, | |
**kwargs): | |
super(EnhancedCTCLoss, self).__init__() | |
self.ctc_loss_func = CTCLoss(use_focal_loss=use_focal_loss) | |
self.use_ace_loss = False | |
if use_ace_loss: | |
self.use_ace_loss = use_ace_loss | |
self.ace_loss_func = ACELoss() | |
self.ace_loss_weight = ace_loss_weight | |
self.use_center_loss = False | |
if use_center_loss: | |
self.use_center_loss = use_center_loss | |
self.center_loss_func = CenterLoss( | |
num_classes=num_classes, | |
feat_dim=feat_dim, | |
init_center=init_center, | |
center_file_path=center_file_path) | |
self.center_loss_weight = center_loss_weight | |
def __call__(self, predicts, batch): | |
loss = self.ctc_loss_func(predicts, batch)["loss"] | |
if self.use_center_loss: | |
center_loss = self.center_loss_func( | |
predicts, batch)["loss_center"] * self.center_loss_weight | |
loss = loss + center_loss | |
if self.use_ace_loss: | |
ace_loss = self.ace_loss_func( | |
predicts, batch)["loss_ace"] * self.ace_loss_weight | |
loss = loss + ace_loss | |
return {'enhanced_ctc_loss': loss} | |