Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/hikopensource/DAVAR-Lab-OCR/blob/main/davarocr/davar_common/models/loss/cross_entropy_loss.py | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
from .basic_loss import CELoss, DistanceLoss | |
class RFLLoss(nn.Layer): | |
def __init__(self, ignore_index=-100, **kwargs): | |
super().__init__() | |
self.cnt_loss = nn.MSELoss(**kwargs) | |
self.seq_loss = nn.CrossEntropyLoss(ignore_index=ignore_index) | |
def forward(self, predicts, batch): | |
self.total_loss = {} | |
total_loss = 0.0 | |
if isinstance(predicts, tuple) or isinstance(predicts, list): | |
cnt_outputs, seq_outputs = predicts | |
else: | |
cnt_outputs, seq_outputs = predicts, None | |
# batch [image, label, length, cnt_label] | |
if cnt_outputs is not None: | |
cnt_loss = self.cnt_loss(cnt_outputs, | |
paddle.cast(batch[3], paddle.float32)) | |
self.total_loss['cnt_loss'] = cnt_loss | |
total_loss += cnt_loss | |
if seq_outputs is not None: | |
targets = batch[1].astype("int64") | |
label_lengths = batch[2].astype('int64') | |
batch_size, num_steps, num_classes = seq_outputs.shape[ | |
0], seq_outputs.shape[1], seq_outputs.shape[2] | |
assert len(targets.shape) == len(list(seq_outputs.shape)) - 1, \ | |
"The target's shape and inputs's shape is [N, d] and [N, num_steps]" | |
inputs = seq_outputs[:, :-1, :] | |
targets = targets[:, 1:] | |
inputs = paddle.reshape(inputs, [-1, inputs.shape[-1]]) | |
targets = paddle.reshape(targets, [-1]) | |
seq_loss = self.seq_loss(inputs, targets) | |
self.total_loss['seq_loss'] = seq_loss | |
total_loss += seq_loss | |
self.total_loss['loss'] = total_loss | |
return self.total_loss | |