Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/wangyuxin87/VisionLAN | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
class VLLoss(nn.Layer): | |
def __init__(self, mode='LF_1', weight_res=0.5, weight_mas=0.5, **kwargs): | |
super(VLLoss, self).__init__() | |
self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean") | |
assert mode in ['LF_1', 'LF_2', 'LA'] | |
self.mode = mode | |
self.weight_res = weight_res | |
self.weight_mas = weight_mas | |
def flatten_label(self, target): | |
label_flatten = [] | |
label_length = [] | |
for i in range(0, target.shape[0]): | |
cur_label = target[i].tolist() | |
label_flatten += cur_label[:cur_label.index(0) + 1] | |
label_length.append(cur_label.index(0) + 1) | |
label_flatten = paddle.to_tensor(label_flatten, dtype='int64') | |
label_length = paddle.to_tensor(label_length, dtype='int32') | |
return (label_flatten, label_length) | |
def _flatten(self, sources, lengths): | |
return paddle.concat([t[:l] for t, l in zip(sources, lengths)]) | |
def forward(self, predicts, batch): | |
text_pre = predicts[0] | |
target = batch[1].astype('int64') | |
label_flatten, length = self.flatten_label(target) | |
text_pre = self._flatten(text_pre, length) | |
if self.mode == 'LF_1': | |
loss = self.loss_func(text_pre, label_flatten) | |
else: | |
text_rem = predicts[1] | |
text_mas = predicts[2] | |
target_res = batch[2].astype('int64') | |
target_sub = batch[3].astype('int64') | |
label_flatten_res, length_res = self.flatten_label(target_res) | |
label_flatten_sub, length_sub = self.flatten_label(target_sub) | |
text_rem = self._flatten(text_rem, length_res) | |
text_mas = self._flatten(text_mas, length_sub) | |
loss_ori = self.loss_func(text_pre, label_flatten) | |
loss_res = self.loss_func(text_rem, label_flatten_res) | |
loss_mas = self.loss_func(text_mas, label_flatten_sub) | |
loss = loss_ori + loss_res * self.weight_res + loss_mas * self.weight_mas | |
return {'loss': loss} | |