Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
This code is refer from: | |
https://github.com/JiaquanYe/TableMASTER-mmocr/tree/master/mmocr/models/textrecog/losses | |
""" | |
import paddle | |
from paddle import nn | |
class TableMasterLoss(nn.Layer): | |
def __init__(self, ignore_index=-1): | |
super(TableMasterLoss, self).__init__() | |
self.structure_loss = nn.CrossEntropyLoss( | |
ignore_index=ignore_index, reduction='mean') | |
self.box_loss = nn.L1Loss(reduction='sum') | |
self.eps = 1e-12 | |
def forward(self, predicts, batch): | |
# structure_loss | |
structure_probs = predicts['structure_probs'] | |
structure_targets = batch[1] | |
structure_targets = structure_targets[:, 1:] | |
structure_probs = structure_probs.reshape( | |
[-1, structure_probs.shape[-1]]) | |
structure_targets = structure_targets.reshape([-1]) | |
structure_loss = self.structure_loss(structure_probs, structure_targets) | |
structure_loss = structure_loss.mean() | |
losses = dict(structure_loss=structure_loss) | |
# box loss | |
bboxes_preds = predicts['loc_preds'] | |
bboxes_targets = batch[2][:, 1:, :] | |
bbox_masks = batch[3][:, 1:] | |
# mask empty-bbox or non-bbox structure token's bbox. | |
masked_bboxes_preds = bboxes_preds * bbox_masks | |
masked_bboxes_targets = bboxes_targets * bbox_masks | |
# horizon loss (x and width) | |
horizon_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 0::2], | |
masked_bboxes_targets[:, :, 0::2]) | |
horizon_loss = horizon_sum_loss / (bbox_masks.sum() + self.eps) | |
# vertical loss (y and height) | |
vertical_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 1::2], | |
masked_bboxes_targets[:, :, 1::2]) | |
vertical_loss = vertical_sum_loss / (bbox_masks.sum() + self.eps) | |
horizon_loss = horizon_loss.mean() | |
vertical_loss = vertical_loss.mean() | |
all_loss = structure_loss + horizon_loss + vertical_loss | |
losses.update({ | |
'loss': all_loss, | |
'horizon_bbox_loss': horizon_loss, | |
'vertical_bbox_loss': vertical_loss | |
}) | |
return losses | |