Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
__all__ = ['DetMetric', 'DetFCEMetric'] | |
from .eval_det_iou import DetectionIoUEvaluator | |
class DetMetric(object): | |
def __init__(self, main_indicator='hmean', **kwargs): | |
self.evaluator = DetectionIoUEvaluator() | |
self.main_indicator = main_indicator | |
self.reset() | |
def __call__(self, preds, batch, **kwargs): | |
''' | |
batch: a list produced by dataloaders. | |
image: np.ndarray of shape (N, C, H, W). | |
ratio_list: np.ndarray of shape(N,2) | |
polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions. | |
ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not. | |
preds: a list of dict produced by post process | |
points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions. | |
''' | |
gt_polyons_batch = batch[2] | |
ignore_tags_batch = batch[3] | |
for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch, | |
ignore_tags_batch): | |
# prepare gt | |
gt_info_list = [{ | |
'points': gt_polyon, | |
'text': '', | |
'ignore': ignore_tag | |
} for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)] | |
# prepare det | |
det_info_list = [{ | |
'points': det_polyon, | |
'text': '' | |
} for det_polyon in pred['points']] | |
result = self.evaluator.evaluate_image(gt_info_list, det_info_list) | |
self.results.append(result) | |
def get_metric(self): | |
""" | |
return metrics { | |
'precision': 0, | |
'recall': 0, | |
'hmean': 0 | |
} | |
""" | |
metrics = self.evaluator.combine_results(self.results) | |
self.reset() | |
return metrics | |
def reset(self): | |
self.results = [] # clear results | |
class DetFCEMetric(object): | |
def __init__(self, main_indicator='hmean', **kwargs): | |
self.evaluator = DetectionIoUEvaluator() | |
self.main_indicator = main_indicator | |
self.reset() | |
def __call__(self, preds, batch, **kwargs): | |
''' | |
batch: a list produced by dataloaders. | |
image: np.ndarray of shape (N, C, H, W). | |
ratio_list: np.ndarray of shape(N,2) | |
polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions. | |
ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not. | |
preds: a list of dict produced by post process | |
points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions. | |
''' | |
gt_polyons_batch = batch[2] | |
ignore_tags_batch = batch[3] | |
for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch, | |
ignore_tags_batch): | |
# prepare gt | |
gt_info_list = [{ | |
'points': gt_polyon, | |
'text': '', | |
'ignore': ignore_tag | |
} for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)] | |
# prepare det | |
det_info_list = [{ | |
'points': det_polyon, | |
'text': '', | |
'score': score | |
} for det_polyon, score in zip(pred['points'], pred['scores'])] | |
for score_thr in self.results.keys(): | |
det_info_list_thr = [ | |
det_info for det_info in det_info_list | |
if det_info['score'] >= score_thr | |
] | |
result = self.evaluator.evaluate_image(gt_info_list, | |
det_info_list_thr) | |
self.results[score_thr].append(result) | |
def get_metric(self): | |
""" | |
return metrics {'heman':0, | |
'thr 0.3':'precision: 0 recall: 0 hmean: 0', | |
'thr 0.4':'precision: 0 recall: 0 hmean: 0', | |
'thr 0.5':'precision: 0 recall: 0 hmean: 0', | |
'thr 0.6':'precision: 0 recall: 0 hmean: 0', | |
'thr 0.7':'precision: 0 recall: 0 hmean: 0', | |
'thr 0.8':'precision: 0 recall: 0 hmean: 0', | |
'thr 0.9':'precision: 0 recall: 0 hmean: 0', | |
} | |
""" | |
metrics = {} | |
hmean = 0 | |
for score_thr in self.results.keys(): | |
metric = self.evaluator.combine_results(self.results[score_thr]) | |
# for key, value in metric.items(): | |
# metrics['{}_{}'.format(key, score_thr)] = value | |
metric_str = 'precision:{:.5f} recall:{:.5f} hmean:{:.5f}'.format( | |
metric['precision'], metric['recall'], metric['hmean']) | |
metrics['thr {}'.format(score_thr)] = metric_str | |
hmean = max(hmean, metric['hmean']) | |
metrics['hmean'] = hmean | |
self.reset() | |
return metrics | |
def reset(self): | |
self.results = { | |
0.3: [], | |
0.4: [], | |
0.5: [], | |
0.6: [], | |
0.7: [], | |
0.8: [], | |
0.9: [] | |
} # clear results | |