Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
from collections import namedtuple | |
import numpy as np | |
from shapely.geometry import Polygon | |
""" | |
reference from : | |
https://github.com/MhLiao/DB/blob/3c32b808d4412680310d3d28eeb6a2d5bf1566c5/concern/icdar2015_eval/detection/iou.py#L8 | |
""" | |
class DetectionIoUEvaluator(object): | |
def __init__(self, iou_constraint=0.5, area_precision_constraint=0.5): | |
self.iou_constraint = iou_constraint | |
self.area_precision_constraint = area_precision_constraint | |
def evaluate_image(self, gt, pred): | |
def get_union(pD, pG): | |
return Polygon(pD).union(Polygon(pG)).area | |
def get_intersection_over_union(pD, pG): | |
return get_intersection(pD, pG) / get_union(pD, pG) | |
def get_intersection(pD, pG): | |
return Polygon(pD).intersection(Polygon(pG)).area | |
def compute_ap(confList, matchList, numGtCare): | |
correct = 0 | |
AP = 0 | |
if len(confList) > 0: | |
confList = np.array(confList) | |
matchList = np.array(matchList) | |
sorted_ind = np.argsort(-confList) | |
confList = confList[sorted_ind] | |
matchList = matchList[sorted_ind] | |
for n in range(len(confList)): | |
match = matchList[n] | |
if match: | |
correct += 1 | |
AP += float(correct) / (n + 1) | |
if numGtCare > 0: | |
AP /= numGtCare | |
return AP | |
perSampleMetrics = {} | |
matchedSum = 0 | |
Rectangle = namedtuple('Rectangle', 'xmin ymin xmax ymax') | |
numGlobalCareGt = 0 | |
numGlobalCareDet = 0 | |
arrGlobalConfidences = [] | |
arrGlobalMatches = [] | |
recall = 0 | |
precision = 0 | |
hmean = 0 | |
detMatched = 0 | |
iouMat = np.empty([1, 1]) | |
gtPols = [] | |
detPols = [] | |
gtPolPoints = [] | |
detPolPoints = [] | |
# Array of Ground Truth Polygons' keys marked as don't Care | |
gtDontCarePolsNum = [] | |
# Array of Detected Polygons' matched with a don't Care GT | |
detDontCarePolsNum = [] | |
pairs = [] | |
detMatchedNums = [] | |
arrSampleConfidences = [] | |
arrSampleMatch = [] | |
evaluationLog = "" | |
for n in range(len(gt)): | |
points = gt[n]['points'] | |
dontCare = gt[n]['ignore'] | |
if not Polygon(points).is_valid: | |
continue | |
gtPol = points | |
gtPols.append(gtPol) | |
gtPolPoints.append(points) | |
if dontCare: | |
gtDontCarePolsNum.append(len(gtPols) - 1) | |
evaluationLog += "GT polygons: " + str(len(gtPols)) + ( | |
" (" + str(len(gtDontCarePolsNum)) + " don't care)\n" | |
if len(gtDontCarePolsNum) > 0 else "\n") | |
for n in range(len(pred)): | |
points = pred[n]['points'] | |
if not Polygon(points).is_valid: | |
continue | |
detPol = points | |
detPols.append(detPol) | |
detPolPoints.append(points) | |
if len(gtDontCarePolsNum) > 0: | |
for dontCarePol in gtDontCarePolsNum: | |
dontCarePol = gtPols[dontCarePol] | |
intersected_area = get_intersection(dontCarePol, detPol) | |
pdDimensions = Polygon(detPol).area | |
precision = 0 if pdDimensions == 0 else intersected_area / pdDimensions | |
if (precision > self.area_precision_constraint): | |
detDontCarePolsNum.append(len(detPols) - 1) | |
break | |
evaluationLog += "DET polygons: " + str(len(detPols)) + ( | |
" (" + str(len(detDontCarePolsNum)) + " don't care)\n" | |
if len(detDontCarePolsNum) > 0 else "\n") | |
if len(gtPols) > 0 and len(detPols) > 0: | |
# Calculate IoU and precision matrixs | |
outputShape = [len(gtPols), len(detPols)] | |
iouMat = np.empty(outputShape) | |
gtRectMat = np.zeros(len(gtPols), np.int8) | |
detRectMat = np.zeros(len(detPols), np.int8) | |
for gtNum in range(len(gtPols)): | |
for detNum in range(len(detPols)): | |
pG = gtPols[gtNum] | |
pD = detPols[detNum] | |
iouMat[gtNum, detNum] = get_intersection_over_union(pD, pG) | |
for gtNum in range(len(gtPols)): | |
for detNum in range(len(detPols)): | |
if gtRectMat[gtNum] == 0 and detRectMat[ | |
detNum] == 0 and gtNum not in gtDontCarePolsNum and detNum not in detDontCarePolsNum: | |
if iouMat[gtNum, detNum] > self.iou_constraint: | |
gtRectMat[gtNum] = 1 | |
detRectMat[detNum] = 1 | |
detMatched += 1 | |
pairs.append({'gt': gtNum, 'det': detNum}) | |
detMatchedNums.append(detNum) | |
evaluationLog += "Match GT #" + \ | |
str(gtNum) + " with Det #" + str(detNum) + "\n" | |
numGtCare = (len(gtPols) - len(gtDontCarePolsNum)) | |
numDetCare = (len(detPols) - len(detDontCarePolsNum)) | |
if numGtCare == 0: | |
recall = float(1) | |
precision = float(0) if numDetCare > 0 else float(1) | |
else: | |
recall = float(detMatched) / numGtCare | |
precision = 0 if numDetCare == 0 else float(detMatched) / numDetCare | |
hmean = 0 if (precision + recall) == 0 else 2.0 * \ | |
precision * recall / (precision + recall) | |
matchedSum += detMatched | |
numGlobalCareGt += numGtCare | |
numGlobalCareDet += numDetCare | |
perSampleMetrics = { | |
'gtCare': numGtCare, | |
'detCare': numDetCare, | |
'detMatched': detMatched, | |
} | |
return perSampleMetrics | |
def combine_results(self, results): | |
numGlobalCareGt = 0 | |
numGlobalCareDet = 0 | |
matchedSum = 0 | |
for result in results: | |
numGlobalCareGt += result['gtCare'] | |
numGlobalCareDet += result['detCare'] | |
matchedSum += result['detMatched'] | |
methodRecall = 0 if numGlobalCareGt == 0 else float( | |
matchedSum) / numGlobalCareGt | |
methodPrecision = 0 if numGlobalCareDet == 0 else float( | |
matchedSum) / numGlobalCareDet | |
methodHmean = 0 if methodRecall + methodPrecision == 0 else 2 * \ | |
methodRecall * methodPrecision / ( | |
methodRecall + methodPrecision) | |
methodMetrics = { | |
'precision': methodPrecision, | |
'recall': methodRecall, | |
'hmean': methodHmean | |
} | |
return methodMetrics | |
if __name__ == '__main__': | |
evaluator = DetectionIoUEvaluator() | |
gts = [[{ | |
'points': [(0, 0), (1, 0), (1, 1), (0, 1)], | |
'text': 1234, | |
'ignore': False, | |
}, { | |
'points': [(2, 2), (3, 2), (3, 3), (2, 3)], | |
'text': 5678, | |
'ignore': False, | |
}]] | |
preds = [[{ | |
'points': [(0.1, 0.1), (1, 0), (1, 1), (0, 1)], | |
'text': 123, | |
'ignore': False, | |
}]] | |
results = [] | |
for gt, pred in zip(gts, preds): | |
results.append(evaluator.evaluate_image(gt, pred)) | |
metrics = evaluator.combine_results(results) | |
print(metrics) | |