Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# The code is refer from: https://github.com/open-mmlab/mmocr/blob/main/mmocr/core/evaluation/kie_metric.py | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import paddle | |
__all__ = ['KIEMetric'] | |
class KIEMetric(object): | |
def __init__(self, main_indicator='hmean', **kwargs): | |
self.main_indicator = main_indicator | |
self.reset() | |
self.node = [] | |
self.gt = [] | |
def __call__(self, preds, batch, **kwargs): | |
nodes, _ = preds | |
gts, tag = batch[4].squeeze(0), batch[5].tolist()[0] | |
gts = gts[:tag[0], :1].reshape([-1]) | |
self.node.append(nodes.numpy()) | |
self.gt.append(gts) | |
# result = self.compute_f1_score(nodes, gts) | |
# self.results.append(result) | |
def compute_f1_score(self, preds, gts): | |
ignores = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25] | |
C = preds.shape[1] | |
classes = np.array(sorted(set(range(C)) - set(ignores))) | |
hist = np.bincount( | |
(gts * C).astype('int64') + preds.argmax(1), minlength=C | |
**2).reshape([C, C]).astype('float32') | |
diag = np.diag(hist) | |
recalls = diag / hist.sum(1).clip(min=1) | |
precisions = diag / hist.sum(0).clip(min=1) | |
f1 = 2 * recalls * precisions / (recalls + precisions).clip(min=1e-8) | |
return f1[classes] | |
def combine_results(self, results): | |
node = np.concatenate(self.node, 0) | |
gts = np.concatenate(self.gt, 0) | |
results = self.compute_f1_score(node, gts) | |
data = {'hmean': results.mean()} | |
return data | |
def get_metric(self): | |
metrics = self.combine_results(self.results) | |
self.reset() | |
return metrics | |
def reset(self): | |
self.results = [] # clear results | |
self.node = [] | |
self.gt = [] | |