Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from rapidfuzz.distance import Levenshtein | |
from difflib import SequenceMatcher | |
import numpy as np | |
import string | |
class RecMetric(object): | |
def __init__(self, | |
main_indicator='acc', | |
is_filter=False, | |
ignore_space=True, | |
**kwargs): | |
self.main_indicator = main_indicator | |
self.is_filter = is_filter | |
self.ignore_space = ignore_space | |
self.eps = 1e-5 | |
self.reset() | |
def _normalize_text(self, text): | |
text = ''.join( | |
filter(lambda x: x in (string.digits + string.ascii_letters), text)) | |
return text.lower() | |
def __call__(self, pred_label, *args, **kwargs): | |
preds, labels = pred_label | |
correct_num = 0 | |
all_num = 0 | |
norm_edit_dis = 0.0 | |
for (pred, pred_conf), (target, _) in zip(preds, labels): | |
if self.ignore_space: | |
pred = pred.replace(" ", "") | |
target = target.replace(" ", "") | |
if self.is_filter: | |
pred = self._normalize_text(pred) | |
target = self._normalize_text(target) | |
norm_edit_dis += Levenshtein.normalized_distance(pred, target) | |
if pred == target: | |
correct_num += 1 | |
all_num += 1 | |
self.correct_num += correct_num | |
self.all_num += all_num | |
self.norm_edit_dis += norm_edit_dis | |
return { | |
'acc': correct_num / (all_num + self.eps), | |
'norm_edit_dis': 1 - norm_edit_dis / (all_num + self.eps) | |
} | |
def get_metric(self): | |
""" | |
return metrics { | |
'acc': 0, | |
'norm_edit_dis': 0, | |
} | |
""" | |
acc = 1.0 * self.correct_num / (self.all_num + self.eps) | |
norm_edit_dis = 1 - self.norm_edit_dis / (self.all_num + self.eps) | |
self.reset() | |
return {'acc': acc, 'norm_edit_dis': norm_edit_dis} | |
def reset(self): | |
self.correct_num = 0 | |
self.all_num = 0 | |
self.norm_edit_dis = 0 | |
class CNTMetric(object): | |
def __init__(self, main_indicator='acc', **kwargs): | |
self.main_indicator = main_indicator | |
self.eps = 1e-5 | |
self.reset() | |
def __call__(self, pred_label, *args, **kwargs): | |
preds, labels = pred_label | |
correct_num = 0 | |
all_num = 0 | |
for pred, target in zip(preds, labels): | |
if pred == target: | |
correct_num += 1 | |
all_num += 1 | |
self.correct_num += correct_num | |
self.all_num += all_num | |
return {'acc': correct_num / (all_num + self.eps), } | |
def get_metric(self): | |
""" | |
return metrics { | |
'acc': 0, | |
} | |
""" | |
acc = 1.0 * self.correct_num / (self.all_num + self.eps) | |
self.reset() | |
return {'acc': acc} | |
def reset(self): | |
self.correct_num = 0 | |
self.all_num = 0 | |
class CANMetric(object): | |
def __init__(self, main_indicator='exp_rate', **kwargs): | |
self.main_indicator = main_indicator | |
self.word_right = [] | |
self.exp_right = [] | |
self.word_total_length = 0 | |
self.exp_total_num = 0 | |
self.word_rate = 0 | |
self.exp_rate = 0 | |
self.reset() | |
self.epoch_reset() | |
def __call__(self, preds, batch, **kwargs): | |
for k, v in kwargs.items(): | |
epoch_reset = v | |
if epoch_reset: | |
self.epoch_reset() | |
word_probs = preds | |
word_label, word_label_mask = batch | |
line_right = 0 | |
if word_probs is not None: | |
word_pred = word_probs.argmax(2) | |
word_pred = word_pred.cpu().detach().numpy() | |
word_scores = [ | |
SequenceMatcher( | |
None, | |
s1[:int(np.sum(s3))], | |
s2[:int(np.sum(s3))], | |
autojunk=False).ratio() * ( | |
len(s1[:int(np.sum(s3))]) + len(s2[:int(np.sum(s3))])) / | |
len(s1[:int(np.sum(s3))]) / 2 | |
for s1, s2, s3 in zip(word_label, word_pred, word_label_mask) | |
] | |
batch_size = len(word_scores) | |
for i in range(batch_size): | |
if word_scores[i] == 1: | |
line_right += 1 | |
self.word_rate = np.mean(word_scores) #float | |
self.exp_rate = line_right / batch_size #float | |
exp_length, word_length = word_label.shape[:2] | |
self.word_right.append(self.word_rate * word_length) | |
self.exp_right.append(self.exp_rate * exp_length) | |
self.word_total_length = self.word_total_length + word_length | |
self.exp_total_num = self.exp_total_num + exp_length | |
def get_metric(self): | |
""" | |
return { | |
'word_rate': 0, | |
"exp_rate": 0, | |
} | |
""" | |
cur_word_rate = sum(self.word_right) / self.word_total_length | |
cur_exp_rate = sum(self.exp_right) / self.exp_total_num | |
self.reset() | |
return {'word_rate': cur_word_rate, "exp_rate": cur_exp_rate} | |
def reset(self): | |
self.word_rate = 0 | |
self.exp_rate = 0 | |
def epoch_reset(self): | |
self.word_right = [] | |
self.exp_right = [] | |
self.word_total_length = 0 | |
self.exp_total_num = 0 | |