Spaces:
Runtime error
Runtime error
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
https://github.com/FudanVI/FudanOCR/blob/main/text-gestalt/utils/ssim_psnr.py | |
""" | |
from math import exp | |
import paddle | |
import paddle.nn.functional as F | |
import paddle.nn as nn | |
import string | |
class SSIM(nn.Layer): | |
def __init__(self, window_size=11, size_average=True): | |
super(SSIM, self).__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.channel = 1 | |
self.window = self.create_window(window_size, self.channel) | |
def gaussian(self, window_size, sigma): | |
gauss = paddle.to_tensor([ | |
exp(-(x - window_size // 2)**2 / float(2 * sigma**2)) | |
for x in range(window_size) | |
]) | |
return gauss / gauss.sum() | |
def create_window(self, window_size, channel): | |
_1D_window = self.gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).unsqueeze(0).unsqueeze(0) | |
window = _2D_window.expand([channel, 1, window_size, window_size]) | |
return window | |
def _ssim(self, img1, img2, window, window_size, channel, | |
size_average=True): | |
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = F.conv2d( | |
img1 * img1, window, padding=window_size // 2, | |
groups=channel) - mu1_sq | |
sigma2_sq = F.conv2d( | |
img2 * img2, window, padding=window_size // 2, | |
groups=channel) - mu2_sq | |
sigma12 = F.conv2d( | |
img1 * img2, window, padding=window_size // 2, | |
groups=channel) - mu1_mu2 | |
C1 = 0.01**2 | |
C2 = 0.03**2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( | |
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) | |
if size_average: | |
return ssim_map.mean() | |
else: | |
return ssim_map.mean([1, 2, 3]) | |
def ssim(self, img1, img2, window_size=11, size_average=True): | |
(_, channel, _, _) = img1.shape | |
window = self.create_window(window_size, channel) | |
return self._ssim(img1, img2, window, window_size, channel, | |
size_average) | |
def forward(self, img1, img2): | |
(_, channel, _, _) = img1.shape | |
if channel == self.channel and self.window.dtype == img1.dtype: | |
window = self.window | |
else: | |
window = self.create_window(self.window_size, channel) | |
self.window = window | |
self.channel = channel | |
return self._ssim(img1, img2, window, self.window_size, channel, | |
self.size_average) | |
class SRMetric(object): | |
def __init__(self, main_indicator='all', **kwargs): | |
self.main_indicator = main_indicator | |
self.eps = 1e-5 | |
self.psnr_result = [] | |
self.ssim_result = [] | |
self.calculate_ssim = SSIM() | |
self.reset() | |
def reset(self): | |
self.correct_num = 0 | |
self.all_num = 0 | |
self.norm_edit_dis = 0 | |
self.psnr_result = [] | |
self.ssim_result = [] | |
def calculate_psnr(self, img1, img2): | |
# img1 and img2 have range [0, 1] | |
mse = ((img1 * 255 - img2 * 255)**2).mean() | |
if mse == 0: | |
return float('inf') | |
return 20 * paddle.log10(255.0 / paddle.sqrt(mse)) | |
def _normalize_text(self, text): | |
text = ''.join( | |
filter(lambda x: x in (string.digits + string.ascii_letters), text)) | |
return text.lower() | |
def __call__(self, pred_label, *args, **kwargs): | |
metric = {} | |
images_sr = pred_label["sr_img"] | |
images_hr = pred_label["hr_img"] | |
psnr = self.calculate_psnr(images_sr, images_hr) | |
ssim = self.calculate_ssim(images_sr, images_hr) | |
self.psnr_result.append(psnr) | |
self.ssim_result.append(ssim) | |
def get_metric(self): | |
""" | |
return metrics { | |
'acc': 0, | |
'norm_edit_dis': 0, | |
} | |
""" | |
self.psnr_avg = sum(self.psnr_result) / len(self.psnr_result) | |
self.psnr_avg = round(self.psnr_avg.item(), 6) | |
self.ssim_avg = sum(self.ssim_result) / len(self.ssim_result) | |
self.ssim_avg = round(self.ssim_avg.item(), 6) | |
self.all_avg = self.psnr_avg + self.ssim_avg | |
self.reset() | |
return { | |
'psnr_avg': self.psnr_avg, | |
"ssim_avg": self.ssim_avg, | |
"all": self.all_avg | |
} | |