Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
from ppocr.metrics.det_metric import DetMetric | |
class TableStructureMetric(object): | |
def __init__(self, | |
main_indicator='acc', | |
eps=1e-6, | |
del_thead_tbody=False, | |
**kwargs): | |
self.main_indicator = main_indicator | |
self.eps = eps | |
self.del_thead_tbody = del_thead_tbody | |
self.reset() | |
def __call__(self, pred_label, batch=None, *args, **kwargs): | |
preds, labels = pred_label | |
pred_structure_batch_list = preds['structure_batch_list'] | |
gt_structure_batch_list = labels['structure_batch_list'] | |
correct_num = 0 | |
all_num = 0 | |
for (pred, pred_conf), target in zip(pred_structure_batch_list, | |
gt_structure_batch_list): | |
pred_str = ''.join(pred) | |
target_str = ''.join(target) | |
if self.del_thead_tbody: | |
pred_str = pred_str.replace('<thead>', '').replace( | |
'</thead>', '').replace('<tbody>', '').replace('</tbody>', | |
'') | |
target_str = target_str.replace('<thead>', '').replace( | |
'</thead>', '').replace('<tbody>', '').replace('</tbody>', | |
'') | |
if pred_str == target_str: | |
correct_num += 1 | |
all_num += 1 | |
self.correct_num += correct_num | |
self.all_num += all_num | |
def get_metric(self): | |
""" | |
return metrics { | |
'acc': 0, | |
} | |
""" | |
acc = 1.0 * self.correct_num / (self.all_num + self.eps) | |
self.reset() | |
return {'acc': acc} | |
def reset(self): | |
self.correct_num = 0 | |
self.all_num = 0 | |
self.len_acc_num = 0 | |
self.token_nums = 0 | |
self.anys_dict = dict() | |
class TableMetric(object): | |
def __init__(self, | |
main_indicator='acc', | |
compute_bbox_metric=False, | |
box_format='xyxy', | |
del_thead_tbody=False, | |
**kwargs): | |
""" | |
@param sub_metrics: configs of sub_metric | |
@param main_matric: main_matric for save best_model | |
@param kwargs: | |
""" | |
self.structure_metric = TableStructureMetric( | |
del_thead_tbody=del_thead_tbody) | |
self.bbox_metric = DetMetric() if compute_bbox_metric else None | |
self.main_indicator = main_indicator | |
self.box_format = box_format | |
self.reset() | |
def __call__(self, pred_label, batch=None, *args, **kwargs): | |
self.structure_metric(pred_label) | |
if self.bbox_metric is not None: | |
self.bbox_metric(*self.prepare_bbox_metric_input(pred_label)) | |
def prepare_bbox_metric_input(self, pred_label): | |
pred_bbox_batch_list = [] | |
gt_ignore_tags_batch_list = [] | |
gt_bbox_batch_list = [] | |
preds, labels = pred_label | |
batch_num = len(preds['bbox_batch_list']) | |
for batch_idx in range(batch_num): | |
# pred | |
pred_bbox_list = [ | |
self.format_box(pred_box) | |
for pred_box in preds['bbox_batch_list'][batch_idx] | |
] | |
pred_bbox_batch_list.append({'points': pred_bbox_list}) | |
# gt | |
gt_bbox_list = [] | |
gt_ignore_tags_list = [] | |
for gt_box in labels['bbox_batch_list'][batch_idx]: | |
gt_bbox_list.append(self.format_box(gt_box)) | |
gt_ignore_tags_list.append(0) | |
gt_bbox_batch_list.append(gt_bbox_list) | |
gt_ignore_tags_batch_list.append(gt_ignore_tags_list) | |
return [ | |
pred_bbox_batch_list, | |
[0, 0, gt_bbox_batch_list, gt_ignore_tags_batch_list] | |
] | |
def get_metric(self): | |
structure_metric = self.structure_metric.get_metric() | |
if self.bbox_metric is None: | |
return structure_metric | |
bbox_metric = self.bbox_metric.get_metric() | |
if self.main_indicator == self.bbox_metric.main_indicator: | |
output = bbox_metric | |
for sub_key in structure_metric: | |
output["structure_metric_{}".format( | |
sub_key)] = structure_metric[sub_key] | |
else: | |
output = structure_metric | |
for sub_key in bbox_metric: | |
output["bbox_metric_{}".format(sub_key)] = bbox_metric[sub_key] | |
return output | |
def reset(self): | |
self.structure_metric.reset() | |
if self.bbox_metric is not None: | |
self.bbox_metric.reset() | |
def format_box(self, box): | |
if self.box_format == 'xyxy': | |
x1, y1, x2, y2 = box | |
box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] | |
elif self.box_format == 'xywh': | |
x, y, w, h = box | |
x1, y1, x2, y2 = x - w // 2, y - h // 2, x + w // 2, y + h // 2 | |
box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]] | |
elif self.box_format == 'xyxyxyxy': | |
x1, y1, x2, y2, x3, y3, x4, y4 = box | |
box = [[x1, y1], [x2, y2], [x3, y3], [x4, y4]] | |
return box | |