Spaces:
Runtime error
Runtime error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import importlib | |
from paddle.jit import to_static | |
from paddle.static import InputSpec | |
from .base_model import BaseModel | |
from .distillation_model import DistillationModel | |
__all__ = ["build_model", "apply_to_static"] | |
def build_model(config): | |
config = copy.deepcopy(config) | |
if not "name" in config: | |
arch = BaseModel(config) | |
else: | |
name = config.pop("name") | |
mod = importlib.import_module(__name__) | |
arch = getattr(mod, name)(config) | |
return arch | |
def apply_to_static(model, config, logger): | |
if config["Global"].get("to_static", False) is not True: | |
return model | |
assert "d2s_train_image_shape" in config[ | |
"Global"], "d2s_train_image_shape must be assigned for static training mode..." | |
supported_list = [ | |
"DB", "SVTR_LCNet", "TableMaster", "LayoutXLM", "SLANet", "SVTR" | |
] | |
if config["Architecture"]["algorithm"] in ["Distillation"]: | |
algo = list(config["Architecture"]["Models"].values())[0]["algorithm"] | |
else: | |
algo = config["Architecture"]["algorithm"] | |
assert algo in supported_list, f"algorithms that supports static training must in in {supported_list} but got {algo}" | |
specs = [ | |
InputSpec( | |
[None] + config["Global"]["d2s_train_image_shape"], dtype='float32') | |
] | |
if algo == "SVTR_LCNet": | |
specs.append([ | |
InputSpec( | |
[None, config["Global"]["max_text_length"]], | |
dtype='int64'), InputSpec( | |
[None, config["Global"]["max_text_length"]], dtype='int64'), | |
InputSpec( | |
[None], dtype='int64'), InputSpec( | |
[None], dtype='float64') | |
]) | |
elif algo == "TableMaster": | |
specs.append( | |
[ | |
InputSpec( | |
[None, config["Global"]["max_text_length"]], dtype='int64'), | |
InputSpec( | |
[None, config["Global"]["max_text_length"], 4], | |
dtype='float32'), | |
InputSpec( | |
[None, config["Global"]["max_text_length"], 1], | |
dtype='float32'), | |
InputSpec( | |
[None, 6], dtype='float32'), | |
]) | |
elif algo == "LayoutXLM": | |
specs = [[ | |
InputSpec( | |
shape=[None, 512], dtype="int64"), # input_ids | |
InputSpec( | |
shape=[None, 512, 4], dtype="int64"), # bbox | |
InputSpec( | |
shape=[None, 512], dtype="int64"), # attention_mask | |
InputSpec( | |
shape=[None, 512], dtype="int64"), # token_type_ids | |
InputSpec( | |
shape=[None, 3, 224, 224], dtype="float32"), # image | |
InputSpec( | |
shape=[None, 512], dtype="int64"), # label | |
]] | |
elif algo == "SLANet": | |
specs.append([ | |
InputSpec( | |
[None, config["Global"]["max_text_length"] + 2], dtype='int64'), | |
InputSpec( | |
[None, config["Global"]["max_text_length"] + 2, 4], | |
dtype='float32'), | |
InputSpec( | |
[None, config["Global"]["max_text_length"] + 2, 1], | |
dtype='float32'), | |
InputSpec( | |
[None, 6], dtype='float64'), | |
]) | |
elif algo == "SVTR": | |
specs.append([ | |
InputSpec( | |
[None, config["Global"]["max_text_length"]], dtype='int64'), | |
InputSpec( | |
[None], dtype='int64') | |
]) | |
model = to_static(model, input_spec=specs) | |
logger.info("Successfully to apply @to_static with specs: {}".format(specs)) | |
return model | |