Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from paddle import nn | |
from ppocr.modeling.transforms import build_transform | |
from ppocr.modeling.backbones import build_backbone | |
from ppocr.modeling.necks import build_neck | |
from ppocr.modeling.heads import build_head | |
__all__ = ['BaseModel'] | |
class BaseModel(nn.Layer): | |
def __init__(self, config): | |
""" | |
the module for OCR. | |
args: | |
config (dict): the super parameters for module. | |
""" | |
super(BaseModel, self).__init__() | |
in_channels = config.get('in_channels', 3) | |
model_type = config['model_type'] | |
# build transfrom, | |
# for rec, transfrom can be TPS,None | |
# for det and cls, transfrom shoule to be None, | |
# if you make model differently, you can use transfrom in det and cls | |
if 'Transform' not in config or config['Transform'] is None: | |
self.use_transform = False | |
else: | |
self.use_transform = True | |
config['Transform']['in_channels'] = in_channels | |
self.transform = build_transform(config['Transform']) | |
in_channels = self.transform.out_channels | |
# build backbone, backbone is need for del, rec and cls | |
if 'Backbone' not in config or config['Backbone'] is None: | |
self.use_backbone = False | |
else: | |
self.use_backbone = True | |
config["Backbone"]['in_channels'] = in_channels | |
self.backbone = build_backbone(config["Backbone"], model_type) | |
in_channels = self.backbone.out_channels | |
# build neck | |
# for rec, neck can be cnn,rnn or reshape(None) | |
# for det, neck can be FPN, BIFPN and so on. | |
# for cls, neck should be none | |
if 'Neck' not in config or config['Neck'] is None: | |
self.use_neck = False | |
else: | |
self.use_neck = True | |
config['Neck']['in_channels'] = in_channels | |
self.neck = build_neck(config['Neck']) | |
in_channels = self.neck.out_channels | |
# # build head, head is need for det, rec and cls | |
if 'Head' not in config or config['Head'] is None: | |
self.use_head = False | |
else: | |
self.use_head = True | |
config["Head"]['in_channels'] = in_channels | |
self.head = build_head(config["Head"]) | |
self.return_all_feats = config.get("return_all_feats", False) | |
def forward(self, x, data=None): | |
y = dict() | |
if self.use_transform: | |
x = self.transform(x) | |
if self.use_backbone: | |
x = self.backbone(x) | |
if isinstance(x, dict): | |
y.update(x) | |
else: | |
y["backbone_out"] = x | |
final_name = "backbone_out" | |
if self.use_neck: | |
x = self.neck(x) | |
if isinstance(x, dict): | |
y.update(x) | |
else: | |
y["neck_out"] = x | |
final_name = "neck_out" | |
if self.use_head: | |
x = self.head(x, targets=data) | |
# for multi head, save ctc neck out for udml | |
if isinstance(x, dict) and 'ctc_neck' in x.keys(): | |
y["neck_out"] = x["ctc_neck"] | |
y["head_out"] = x | |
elif isinstance(x, dict): | |
y.update(x) | |
else: | |
y["head_out"] = x | |
final_name = "head_out" | |
if self.return_all_feats: | |
if self.training: | |
return y | |
elif isinstance(x, dict): | |
return x | |
else: | |
return {final_name: x} | |
else: | |
return x |