Spaces:
Runtime error
Runtime error
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import paddle | |
from paddle import nn | |
import paddle.nn.functional as F | |
from paddle import ParamAttr | |
__all__ = ['MobileNetV3'] | |
def make_divisible(v, divisor=8, min_value=None): | |
if min_value is None: | |
min_value = divisor | |
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
if new_v < 0.9 * v: | |
new_v += divisor | |
return new_v | |
class MobileNetV3(nn.Layer): | |
def __init__(self, | |
in_channels=3, | |
model_name='large', | |
scale=0.5, | |
disable_se=False, | |
**kwargs): | |
""" | |
the MobilenetV3 backbone network for detection module. | |
Args: | |
params(dict): the super parameters for build network | |
""" | |
super(MobileNetV3, self).__init__() | |
self.disable_se = disable_se | |
if model_name == "large": | |
cfg = [ | |
# k, exp, c, se, nl, s, | |
[3, 16, 16, False, 'relu', 1], | |
[3, 64, 24, False, 'relu', 2], | |
[3, 72, 24, False, 'relu', 1], | |
[5, 72, 40, True, 'relu', 2], | |
[5, 120, 40, True, 'relu', 1], | |
[5, 120, 40, True, 'relu', 1], | |
[3, 240, 80, False, 'hardswish', 2], | |
[3, 200, 80, False, 'hardswish', 1], | |
[3, 184, 80, False, 'hardswish', 1], | |
[3, 184, 80, False, 'hardswish', 1], | |
[3, 480, 112, True, 'hardswish', 1], | |
[3, 672, 112, True, 'hardswish', 1], | |
[5, 672, 160, True, 'hardswish', 2], | |
[5, 960, 160, True, 'hardswish', 1], | |
[5, 960, 160, True, 'hardswish', 1], | |
] | |
cls_ch_squeeze = 960 | |
elif model_name == "small": | |
cfg = [ | |
# k, exp, c, se, nl, s, | |
[3, 16, 16, True, 'relu', 2], | |
[3, 72, 24, False, 'relu', 2], | |
[3, 88, 24, False, 'relu', 1], | |
[5, 96, 40, True, 'hardswish', 2], | |
[5, 240, 40, True, 'hardswish', 1], | |
[5, 240, 40, True, 'hardswish', 1], | |
[5, 120, 48, True, 'hardswish', 1], | |
[5, 144, 48, True, 'hardswish', 1], | |
[5, 288, 96, True, 'hardswish', 2], | |
[5, 576, 96, True, 'hardswish', 1], | |
[5, 576, 96, True, 'hardswish', 1], | |
] | |
cls_ch_squeeze = 576 | |
else: | |
raise NotImplementedError("mode[" + model_name + | |
"_model] is not implemented!") | |
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25] | |
assert scale in supported_scale, \ | |
"supported scale are {} but input scale is {}".format(supported_scale, scale) | |
inplanes = 16 | |
# conv1 | |
self.conv = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=make_divisible(inplanes * scale), | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
groups=1, | |
if_act=True, | |
act='hardswish') | |
self.stages = [] | |
self.out_channels = [] | |
block_list = [] | |
i = 0 | |
inplanes = make_divisible(inplanes * scale) | |
for (k, exp, c, se, nl, s) in cfg: | |
se = se and not self.disable_se | |
start_idx = 2 if model_name == 'large' else 0 | |
if s == 2 and i > start_idx: | |
self.out_channels.append(inplanes) | |
self.stages.append(nn.Sequential(*block_list)) | |
block_list = [] | |
block_list.append( | |
ResidualUnit( | |
in_channels=inplanes, | |
mid_channels=make_divisible(scale * exp), | |
out_channels=make_divisible(scale * c), | |
kernel_size=k, | |
stride=s, | |
use_se=se, | |
act=nl)) | |
inplanes = make_divisible(scale * c) | |
i += 1 | |
block_list.append( | |
ConvBNLayer( | |
in_channels=inplanes, | |
out_channels=make_divisible(scale * cls_ch_squeeze), | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
groups=1, | |
if_act=True, | |
act='hardswish')) | |
self.stages.append(nn.Sequential(*block_list)) | |
self.out_channels.append(make_divisible(scale * cls_ch_squeeze)) | |
for i, stage in enumerate(self.stages): | |
self.add_sublayer(sublayer=stage, name="stage{}".format(i)) | |
def forward(self, x): | |
x = self.conv(x) | |
out_list = [] | |
for stage in self.stages: | |
x = stage(x) | |
out_list.append(x) | |
return out_list | |
class ConvBNLayer(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
padding, | |
groups=1, | |
if_act=True, | |
act=None): | |
super(ConvBNLayer, self).__init__() | |
self.if_act = if_act | |
self.act = act | |
self.conv = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
groups=groups, | |
bias_attr=False) | |
self.bn = nn.BatchNorm(num_channels=out_channels, act=None) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self.bn(x) | |
if self.if_act: | |
if self.act == "relu": | |
x = F.relu(x) | |
elif self.act == "hardswish": | |
x = F.hardswish(x) | |
else: | |
print("The activation function({}) is selected incorrectly.". | |
format(self.act)) | |
exit() | |
return x | |
class ResidualUnit(nn.Layer): | |
def __init__(self, | |
in_channels, | |
mid_channels, | |
out_channels, | |
kernel_size, | |
stride, | |
use_se, | |
act=None): | |
super(ResidualUnit, self).__init__() | |
self.if_shortcut = stride == 1 and in_channels == out_channels | |
self.if_se = use_se | |
self.expand_conv = ConvBNLayer( | |
in_channels=in_channels, | |
out_channels=mid_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
if_act=True, | |
act=act) | |
self.bottleneck_conv = ConvBNLayer( | |
in_channels=mid_channels, | |
out_channels=mid_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=int((kernel_size - 1) // 2), | |
groups=mid_channels, | |
if_act=True, | |
act=act) | |
if self.if_se: | |
self.mid_se = SEModule(mid_channels) | |
self.linear_conv = ConvBNLayer( | |
in_channels=mid_channels, | |
out_channels=out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
if_act=False, | |
act=None) | |
def forward(self, inputs): | |
x = self.expand_conv(inputs) | |
x = self.bottleneck_conv(x) | |
if self.if_se: | |
x = self.mid_se(x) | |
x = self.linear_conv(x) | |
if self.if_shortcut: | |
x = paddle.add(inputs, x) | |
return x | |
class SEModule(nn.Layer): | |
def __init__(self, in_channels, reduction=4): | |
super(SEModule, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2D(1) | |
self.conv1 = nn.Conv2D( | |
in_channels=in_channels, | |
out_channels=in_channels // reduction, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
self.conv2 = nn.Conv2D( | |
in_channels=in_channels // reduction, | |
out_channels=in_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0) | |
def forward(self, inputs): | |
outputs = self.avg_pool(inputs) | |
outputs = self.conv1(outputs) | |
outputs = F.relu(outputs) | |
outputs = self.conv2(outputs) | |
outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5) | |
return inputs * outputs | |